Skip to main content

Over a Decade of Bacterial Ribonuclease P Modeling

  • Chapter
  • First Online:
Ribonuclease P

Part of the book series: Protein Reviews ((PRON,volume 10))

Abstract

Ribonuclease P constitutes a unique paradigm for understanding RNA recognition, RNA catalysis as well as RNA–protein assembly. The modeling efforts, aiming at unraveling the architectural features of this ribozyme and the molecular basis conferring specificity in recognition of the pre-tRNA substrate and of the protein cofactor, are summarized in this chapter. The molecular models of the RNA subunits result from the integration of a great wealth of phylogenetic and biochemical data that have contributed to the understanding of the pre-tRNA recognition in the context of the two different A and B RNase P subtypes. Later efforts focused on the contribution of the protein subunit on both the binding to the RNA to form the holoenzyme and the selection of the substrate. The crystal structures of various components of the RNase P ribozyme show that the published 3D models successfully predicted the architectures of the RNase P RNAs. These crystal structures also show the need for further molecular modeling developments in order to improve the accuracy of the prediction and to apply them to the whole RNase P with its cofactor and substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman S, Kirsebom L, Talbot S (1993) Recent studies of ribonuclease P. FASEB J 7:7–14

    PubMed  CAS  Google Scholar 

  • Baird NJ, Westhof E, Qin H, Pan T, Sosnick TR (2005) Structure of a folding intermediate reveals the interplay between core and peripheral elements in RNA folding. J Mol Biol 352:712–722

    Article  PubMed  CAS  Google Scholar 

  • Barrera A, Fang X, Jacob J, Casey E, Thiyagarajan P, Pan T (2002) Dimeric and monomeric Bacillus subtilis RNase P holoenzyme in the absence and presence of pre-tRNA substrates. Biochemistry 41:12986–12994

    Article  PubMed  CAS  Google Scholar 

  • Beckert B, Nielsen H, Einvik C, Johansen SD, Westhof E, Masquida B (2008) Molecular modelling of the GIR1 branching ribozyme gives new insight into evolution of structurally related ribozymes. EMBO J 27:667–678

    Article  PubMed  CAS  Google Scholar 

  • Biswas R, Ledman DW, Fox RO, Altman S, Gopalan V (2000) Mapping RNA–protein interactions in ribonuclease P from Escherichia coli using disulfide-linked EDTA–Fe. J Mol Biol 296:19–31

    Article  PubMed  CAS  Google Scholar 

  • Brännvall M, Kirsebom LA (1999) Manganese ions induce miscleavage in the Escherichia coli RNase P RNA-catalyzed reaction. J Mol Biol 292:53–63

    Article  PubMed  Google Scholar 

  • Brännvall M, Kikovska E, Kirsebom LA (2004) Cross talk between the + 73/294 interaction and the cleavage site in RNase P RNA mediated cleavage. Nucleic Acids Res 32:5418–5429

    Article  PubMed  CAS  Google Scholar 

  • Brännvall M, Kikovska E, Wu S, Kirsebom LA (2007) Evidence for induced fit in bacterial RNase P RNA-mediated cleavage. J Mol Biol 372:1149–1164

    Article  PubMed  CAS  Google Scholar 

  • Brown JW, Nolan JM, Haas ES, Rubio MAT, Major F, Pace NR (1996) Comparative analysis of ribonuclease P RNA using gene sequences from natural microbial populations reveals tertiary structural elements. Proc Natl Acad Sci U S A 93:3001–3006

    Article  PubMed  CAS  Google Scholar 

  • Brunel C, Romby P (2000) Probing RNA structure and RNA–ligand complexes with chemical probes. Methods Enzymol 318:3–21

    Article  PubMed  CAS  Google Scholar 

  • Buck AH, Kazantsev AV, Dalby AB, Pace NR (2005) Structural perspective on the activation of RNase P RNA by protein. Nat Struct Mol Biol 12:958–964

    PubMed  CAS  Google Scholar 

  • Burgin AB, Pace NR (1990) Mapping the active site of ribonuclease P RNA using a substrate containing a photoaffinity agent. EMBO J 9:4111–4118

    PubMed  CAS  Google Scholar 

  • Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot CE, Cech TR, Doudna JA (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273:1678–1684

    Article  PubMed  CAS  Google Scholar 

  • Cech TR (2009) Crawling out of the RNA world. Cell 136:599–602

    Article  PubMed  CAS  Google Scholar 

  • Chen JL, Pace NR (1997) Identification of the universally conserved core of ribonuclease P RNA [letter]. RNA 3:557–560

    PubMed  CAS  Google Scholar 

  • Chen JL, Nolan JM, Harris ME, Pace NR (1998) Comparative photocross-linking analysis of the tertiary structures of Escherichia coli and Bacillus subtilis RNase P RNAs. EMBO J 17:1515–1525

    Article  PubMed  CAS  Google Scholar 

  • Christian EL, Harris ME (1999) The track of the pre-tRNA 5′ leader in the ribonuclease P ribozyme–substrate complex. Biochemistry 38:12629–12638

    Article  PubMed  CAS  Google Scholar 

  • Christian EL, McPheeters DS, Harris ME (1998) Identification of individual nucleotides in the bacterial ribonuclease P ribozyme adjacent to the pre-tRNA cleavage site by short-range photo-cross-linking. Biochemistry 37:17618–17628

    Article  PubMed  CAS  Google Scholar 

  • Christian EL, Kaye NM, Harris ME (2000) Helix P4 is a divalent metal ion binding site in the conserved core of the ribonuclease P ribozyme. RNA 6:511–519

    Article  PubMed  CAS  Google Scholar 

  • Costa M, Michel F (1997) Rules for RNA recognition of GNRA tetraloops deduced by in vitro selection: comparison with in vivo evolution. EMBO J 16:3289–3302

    Article  PubMed  CAS  Google Scholar 

  • Crary SM, Niranjanakumari S, Fierke CA (1998) The protein component of Bacillus subtilis ribonuclease P increases catalytic efficiency by enhancing interactions with the 5′ leader sequence of pre-tRNAAsp. Biochemistry 37:9409–9416

    Article  PubMed  CAS  Google Scholar 

  • Darr SC, Brown JW, Pace NR (1992) The varieties of ribonuclease P. Trends Biochem Sci 17:178–182

    Article  PubMed  CAS  Google Scholar 

  • Daviter T, Gromadski KB, Rodnina MV (2006) The ribosome’s response to codon–anticodon mismatches. Biochimie 88:1001–1011

    Article  PubMed  CAS  Google Scholar 

  • Doherty EA, Batey RT, Masquida B, Doudna JA (2001) A universal mode of helix packing in RNA. Nat Struct Biol 8:339–343

    Article  PubMed  CAS  Google Scholar 

  • Easterwood TR, Harvey SC (1997) Ribonuclease P RNA: models of the 15/16 bulge from Escherichia coli and the P15 stem loop of Bacillus subtilis. RNA 3:577–585

    PubMed  CAS  Google Scholar 

  • Gaur RK, Hanne A, Conrad F, Kahle D, Krupp G (1996) Differences in the interaction of Escherichia coli RNase P RNA with tRNAs containing a short or a long extra arm. RNA 2:674–681

    PubMed  CAS  Google Scholar 

  • Giege R (2008) Toward a more complete view of tRNA biology. Nat Struct Mol Biol 15:1007–1014

    Article  PubMed  CAS  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  PubMed  CAS  Google Scholar 

  • Haas ES, Morse DP, Brown JW, Schmidt FJ, Pace NR (1991) Long-range structure in ribonuclease P RNA. Science 254:853–856

    Article  PubMed  CAS  Google Scholar 

  • Haas ES, Brown JW, Pitulle C, Pace NR (1994) Further perspective on the catalytic core and secondary structure of ribonuclease P RNA. Proc Natl Acad Sci U S A 91:2527–2531

    Article  PubMed  CAS  Google Scholar 

  • Harris ME, Nolan JM, Malhotra A, Brown JW, Harvey SC, Pace NR (1994) Use of photoaffinity crosslinking and molecular modeling to analyze the global architecture of ribonuclease P RNA. EMBO J 13:3953–3963

    PubMed  CAS  Google Scholar 

  • Harris ME, Kazantsev AV, Chen JL, Pace NR (1997) Analysis of the tertiary structure of the ribonuclease P ribozyme–substrate complex by site-specific photoaffinity crosslinking. RNA 3:561–576

    PubMed  CAS  Google Scholar 

  • Hartmann RK, Heinrich J, Schlegl J, Schuster H (1995) Precursor of C4 antisense RNA of bacteriophages P1 and P7 is a substrate for RNase P of Escherichia coli. Proc Natl Acad Sci U S A 92:5822–5826

    Article  PubMed  CAS  Google Scholar 

  • Heilek G, Noller H (1996a) Directed hydroxyl radical probing of the rRNA neighborhood of ribosomal protein S13 using tethered Fe(II). RNA 2:597–602

    PubMed  CAS  Google Scholar 

  • Heilek G, Noller H (1996b) Site-directed hydroxyl radical probing of the rRNA neighborhood of ribosomal protein S5. Science 272:1659–1662

    Article  PubMed  CAS  Google Scholar 

  • Heilek GM, Marusak R, Meares CF, Noller HF (1995) Directed hydroxyl radical probing of 16 S rRNA using Fe(II) tethered to ribosomal protein S4. Proc Natl Acad Sci U S A 92:1113–1116

    Article  PubMed  CAS  Google Scholar 

  • Holzmann J, Frank P, Loffler E, Bennett KL, Gerner C, Rossmanith W (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135:462–474

    Article  PubMed  CAS  Google Scholar 

  • Kazantsev AV, Krivenko AA, Harrington DJ, Holbrook SR, Adams PD, Pace NR (2005) Crystal structure of a bacterial ribonuclease P RNA. Proc Natl Acad Sci U S A 102:13392–13397

    Article  PubMed  CAS  Google Scholar 

  • Kikovska E, Svard SG, Kirsebom LA (2007) Eukaryotic RNase P RNA mediates cleavage in the absence of protein. Proc Natl Acad Sci U S A 104:2062–2067

    Article  PubMed  CAS  Google Scholar 

  • Kirsebom LA (2007) RNase P RNA mediated cleavage: substrate recognition and catalysis. Biochimie 89:1183–1194

    Article  PubMed  CAS  Google Scholar 

  • Kleywegt GJ, Jones TA (1994) A super position. CCP4/ESF-EACBM Newsletter Protein Crystallogr 31:9–14

    Google Scholar 

  • Krasilnikov AS, Mondragon A (2003) On the occurrence of the T-loop RNA folding motif in large RNA molecules. RNA 9:640–643

    Article  PubMed  CAS  Google Scholar 

  • Krasilnikov AS, Yang X, Pan T, Mondragon A (2003) Crystal structure of the specificity domain of ribonuclease P. Nature 421:760–764

    Article  PubMed  CAS  Google Scholar 

  • Krasilnikov AS, Xiao Y, Pan T, Mondragon A (2004) Basis for structural diversity in homologous RNAs. Science 306:104–107

    Article  PubMed  CAS  Google Scholar 

  • Kurz JC, Niranjanakumari S, Fierke CA (1998) Protein component of Bacillus subtilis RNase P specifically enhances the affinity for precursor-tRNAAsp. Biochemistry 37:2393–2400

    Article  PubMed  CAS  Google Scholar 

  • LaGrandeur TE, Huttenhofer A, Noller HF, Pace NR (1994) Phylogenetic comparative chemical footprint analysis of the interaction between ribonuclease P RNA and tRNA. EMBO J 13:3945–3952

    PubMed  CAS  Google Scholar 

  • Leontis NB, Stombaugh J, Westhof E (2002) The non-Watson–Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30:3497–3531

    Article  PubMed  CAS  Google Scholar 

  • Lescoute A, Westhof E (2006) The A-minor motifs in the decoding recognition process. Biochimie 88:993–999

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Deutscher MP (1996) Maturation pathways for E. coli tRNA precursors: a random multienzyme process in vivo. Cell 86:503–512

    Article  PubMed  CAS  Google Scholar 

  • Loria A, Pan T (1996) Domain structure of the ribozyme from eubacterial ribonuclease P. RNA 2:551–563

    PubMed  CAS  Google Scholar 

  • Loria A, Pan T (1997) Recognition of the T stem-loop of a pre-tRNA substrate by the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry 36:6317–6325

    Article  PubMed  CAS  Google Scholar 

  • Loria A, Niranjanakumari S, Fierke CA, Pan T (1998) Recognition of a pre-tRNA substrate by the Bacillus subtilis RNase P holoenzyme. Biochemistry 37:15466–15473

    Article  PubMed  CAS  Google Scholar 

  • Major F, Turcotte M, Gautheret D, Lapalme G, Fillion E, Cedergren R (1991) The combination of symbolic and numerical computation for three-dimensional modeling of RNA. Science 253:1255–1260

    Article  PubMed  CAS  Google Scholar 

  • Major F, Gautheret D, Cedergren R (1993) Reproducing the three-dimensional structure of a tRNA molecule from structural constraints. Proc Natl Acad Sci U S A 90:9408–9412

    Article  PubMed  CAS  Google Scholar 

  • Malhotra A, Harvey SC (1994) A quantitative model of the Escherichia coli 16 S RNA in the 30 S ribosomal subunit. J Mol Biol 240:308–340

    Article  PubMed  CAS  Google Scholar 

  • Marquez SM, Chen JL, Evans D, Pace NR (2006) Structure and function of eukaryotic Ribonuclease P RNA. Mol Cell 24:445–456

    Article  PubMed  CAS  Google Scholar 

  • Masquida B, Westhof E (2005) Modeling the architecture of structured RNAs within a modular and hierarchical framework. In: Hartmann RK, Bindereif A, Schön A, Westhof E (eds) Handbook of RNA biochemistry. Wiley VCH Verlag Gmbh & Co, Weinheim, pp 536–545

    Chapter  Google Scholar 

  • Massire C, Westhof E (1998) MANIP: an interactive tool for modelling RNA. J Mol Graph Model 16:197–205, 255–257

    PubMed  CAS  Google Scholar 

  • Massire C, Jaeger L, Westhof E (1997) Phylogenetic evidence for a new tertiary interaction in bacterial RNase P RNA. RNA 3:553–556

    PubMed  CAS  Google Scholar 

  • Massire C, Jaeger L, Westhof E (1998) Derivation of the three-dimensional architecture of bacterial ribonuclease P RNAs from comparative sequence analysis. J Mol Biol 279:773–793

    Article  PubMed  CAS  Google Scholar 

  • Matsuhashi M, Dietrich CP, Strominger JL (1965) Incorporation of glycine into the cell wall glycopeptide in Staphylococcus aureus: role of sRNA and lipid intermediates. Proc Natl Acad Sci U S A 54:587–594

    Article  PubMed  CAS  Google Scholar 

  • Michel F, Costa M, Westhof E (2009) The ribozyme core of group II introns: a structure in want of partners. Trends Biochem Sci 34:189–199

    Article  PubMed  CAS  Google Scholar 

  • Niranjanakumari S, Stams T, Crary SM, Christianson DW, Fierke CA (1998) Protein component of the ribozyme ribonuclease P alters substrate recognition by directly contacting precursor tRNA. Proc Natl Acad Sci U S A 95:15212–15217

    Article  PubMed  CAS  Google Scholar 

  • Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci U S A 98:4899–4903

    Article  PubMed  CAS  Google Scholar 

  • Nolan JM, Burke DH, Pace NR (1993) Circularly permuted tRNAs as specific photoaffinity probes of ribonuclease P RNA structure. Science 261:762–765

    Article  PubMed  CAS  Google Scholar 

  • Odell L, Huang V, Jakacka M, Pan T (1998) Interaction of structural modules in substrate binding by the ribozyme from Bacillus subtilis RNase P. Nucleic Acids Res 26:3717–3723

    Article  PubMed  CAS  Google Scholar 

  • Ogle JM, Brodersen DE, Clemons WM Jr, Tarry MJ, Carter AP, Ramakrishnan V (2001) Recognition of cognate transfer RNA by the 30 S ribosomal subunit. Science 292:897–902

    Article  PubMed  CAS  Google Scholar 

  • Pan T (1995) Higher order folding and domain analysis of the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry 34:902–909

    Article  PubMed  CAS  Google Scholar 

  • Peck-Miller KA, Altman S (1991) Kinetics of the processing of the precursor to 4.5 S RNA, a naturally occurring substrate for RNase P from Escherichia coli. J Mol Biol 221:1–5

    Article  PubMed  CAS  Google Scholar 

  • Rangan P, Masquida B, Westhof E, Woodson SA (2004) Architecture and folding mechanism of the Azoarcus Group I Pre-tRNA. J Mol Biol 339:41–51

    Article  PubMed  CAS  Google Scholar 

  • Rox C, Feltens R, Pfeiffer T, Hartmann RK (2002) Potential contact sites between the protein and RNA subunit in the Bacillus subtilis RNase P holoenzyme. J Mol Biol 315:551–560

    Article  PubMed  CAS  Google Scholar 

  • Roy H, Becker HD, Mazauric MH, Kern D (2007) Structural elements defining elongation factor Tu mediated suppression of codon ambiguity. Nucleic Acids Res 35:3420–3430

    Article  PubMed  CAS  Google Scholar 

  • Siew D, Zahler NH, Cassano AG, Strobel SA, Harris ME (1999) Identification of adenosine functional groups involved in substrate binding by the ribonuclease P ribozyme. Biochemistry 38:1873–1883

    Article  PubMed  CAS  Google Scholar 

  • Spitzfaden C, Nicholson N, Jones JJ, Guth S, Lehr R, Prescott CD, Hegg LA, Eggleston DS (2000) The structure of ribonuclease P protein from Staphylococcus aureus reveals a unique binding site for single-stranded RNA. J Mol Biol 295:105–115

    Article  PubMed  CAS  Google Scholar 

  • Stams T, Niranjanakumari S, Fierke CA, Christianson DW (1998) Ribonuclease P protein structure: evolutionary origins in the translational apparatus. Science 280:752–755

    Article  PubMed  CAS  Google Scholar 

  • Stathopoulos C, Tekos A, Zarkadis IK, Drainas D (2001) Extensive deproteinization of Dictyostelium discoideum RNase P reveals a new catalytic activity. Eur J Biochem 268:2134–2140

    Article  PubMed  CAS  Google Scholar 

  • Talbot SJ, Altman S (1994) Gel retardation analysis of the interaction between C5 protein and M1 RNA in the formation of the ribonuclease P holoenzyme from Escherichia coli. Biochemistry 33:1399–1405

    Article  PubMed  CAS  Google Scholar 

  • Torres-Larios A, Swinger KK, Krasilnikov AS, Pan T, Mondragon A (2005) Crystal structure of the RNA component of bacterial ribonuclease P. Nature 437:584–587

    Article  PubMed  CAS  Google Scholar 

  • Tsai HY, Masquida B, Biswas R, Westhof E, Gopalan V (2003) Molecular modeling of the three-dimensional structure of the bacterial RNase P holoenzyme. J Mol Biol 325:661–675

    Article  PubMed  CAS  Google Scholar 

  • Vicens Q, Westhof E (2001) Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. Structure (Camb) 9:647–658

    Article  CAS  Google Scholar 

  • Vioque A, Arnez J, Altman S (1988) Protein–RNA interactions in the RNase P holoenzyme from Escherichia coli. J Mol Biol 202:835–848

    Article  PubMed  CAS  Google Scholar 

  • Westhof E, Altman S (1994) Three-dimensional working model of M1 RNA, the catalytic RNA subunit of ribonuclease P from Escherichia coli. Proc Natl Acad Sci U S A 91:5133–5137

    Article  PubMed  CAS  Google Scholar 

  • Westhof E, Wesolowski D, Altman S (1996) Mapping in three dimensions of regions in a catalytic RNA protected from attack by an Fe(II)–EDTA reagent. J Mol Biol 258:600–613

    Article  PubMed  CAS  Google Scholar 

  • Zarrinkar PP, Wang J, Williamson JR (1996) Slow folding kinetics of RNase P RNA. RNA 2:564–573

    PubMed  CAS  Google Scholar 

  • Forster AC and Altman S (1990) External guide sequences for an RNA enzyme. Science, 249:783–786

    Article  PubMed  CAS  Google Scholar 

  • Kirsebom LA and Svärd SG (1994) Base pairing between Escherichia coli RNase P RNA and its substrate. Embo J, 13:4870–4876

    PubMed  CAS  Google Scholar 

  • Massire C and Westhof E (1998) MANIP: an interactive tool for modelling RNA. J Mol Graph Model, 16:197–205, 255–197

    PubMed  CAS  Google Scholar 

  • Oh BK and Pace NR (1994) Interaction of the 3’-end of tRNA with ribonuclease P RNA. Nucleic Acids Res, 22:4087–4094

    Article  PubMed  CAS  Google Scholar 

  • Svärd SG, Kagardt U and Kirsebom LA (1996) Phylogenetic comparative mutational analysis of the base-pairing between RNase P RNA and its substrate. Rna, 2:463–472

    PubMed  Google Scholar 

  • Kirsebom LA and Svärd SG (1994) Base pairing between Escherichia coli RNase P RNA and its substrate. Embo J, 13:4870–4876

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Masquida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Masquida, B., Jossinet, F., Westhof, E. (2010). Over a Decade of Bacterial Ribonuclease P Modeling. In: Liu, F., Altman, S. (eds) Ribonuclease P. Protein Reviews, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1142-1_3

Download citation

Publish with us

Policies and ethics