Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 663))

Abstract

In this review, the structural biology of interaction between the neural cell adhesion molecule (NCAM) and the fibroblast growth factor (FGF) receptor is described and a possible mechanism of the FGF-receptor activation by NCAM is discussed. Most of the FGF-receptor molecules are thought to be constantly involved in a transient interaction with NCAM. However, the FGF-receptor becomes activated only when NCAM is involved in the trans-homophilic binding (mediating cell-cell adhesion). The trans-homophilic binding between the NCAM molecules is believed to result in the formation of either one- or two-dimensional “zipper”-like arrays of the NCAM molecules, which leads to NCAM clustering and as a result to clustering of the FGF-receptor, which in turn may lead to its activation through a direct receptor-receptor dimerization (and thus activation) due to an increase in the local concentration of the receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jørgensen OS, Bock E (1974) Brain specific synaptosomal membrane proteins demonstrated by crossed immunoelectrophoresis. J Neurochem 23:879-880

    Article  PubMed  Google Scholar 

  2. Thiery JP, Brackenbury R, Rutishauser U, Edelman GM (1977) Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina. J Biol Chem 252:6841-6845

    PubMed  CAS  Google Scholar 

  3. Paoloni-Giacobino A, Chen H, Antonarakis SE (1997) Cloning of a novel human neural cell adhesion molecule gene (NCAM2) that maps to chromosome region 21q21 and is potentially involved in Down syndrome. Genomics 43:43-51

    Article  PubMed  CAS  Google Scholar 

  4. Owens GC, Edelman GM, Cunningham BA (1987) Organization of the neural cell adhesion molecule (N-CAM) gene: alternative exon usage as the basis for different membrane-associated domains. Proc Natl Acad Sci USA 84:294-298

    Article  PubMed  CAS  Google Scholar 

  5. Small SJ, Haines SL, Akeson RA (1988) Polypeptide variation in an N-CAM extracellular immunoglobulin-like fold is developmentally regulated through alternative splicing. Neuron 1:1007-1017

    Article  PubMed  CAS  Google Scholar 

  6. Dickson G, Gower HJ, Barton CH, Prentice HM, Elsom VL, Moore SE, Cox RD, Quinn C, Putt W, Walsh FS (1987) Human muscle neural cell adhesion molecule (N-CAM): identification of a muscle-specific sequence in the extracellular domain. Cell 50:1119-1130

    Article  PubMed  CAS  Google Scholar 

  7. Gower HJ, Barton CH, Elsom VL, Thompson J, Moore SE, Dickson G, Walsh FS (1988) Alternative splicing generates a secreted form of N-CAM in muscle and brain. Cell 55:955-964

    Article  PubMed  CAS  Google Scholar 

  8. Thompson J, Dickson G, Moore SE, Gower HJ, Putt W, Kenimer JG, Barton CH, Walsh FS (1989) Alternative splicing of the neural cell adhesion molecule gene generates variant extracellular domain structure in skeletal muscle and brain. Genes Dev 3:348-357

    Article  PubMed  CAS  Google Scholar 

  9. Barthels D, Vopper G, Boned A, Cremer H, Wille W (1992) High degree of NCAM diversity generated by alternative RNA Splicing in brain and muscle. Eur J NeuroSci 4:327-337

    Article  PubMed  Google Scholar 

  10. Thomsen NK, Soroka V, Jensen PH, Berezin V, Kiselyov VV, Bock E, Poulsen FM (1996) The three-dimensional structure of the first domain of neural cell adhesion molecule. Nat Struct Biol 3:581-585

    Article  PubMed  CAS  Google Scholar 

  11. Jensen PH, Soroka V, Thomsen NK, Ralets I, Berezin V, Bock E, Poulsen FM (1999) Structure and interactions of NCAM modules 1 and 2, basic elements in neural cell adhesion. Nat Struct Biol 6:486-493

    Article  PubMed  CAS  Google Scholar 

  12. Kasper C, Rasmussen H, Kastrup JS, Ikemizu S, Jones EY, Berezin V, Bock E, Larsen IK (2000) Structural basis of cell-cell adhesion by NCAM. Nat Struct Biol 7:389-393

    Article  PubMed  CAS  Google Scholar 

  13. Atkins AR, Chung J, Deechongkit S, Little EB, Edelman GM, Wright PE, Cunningham BA, Dyson HJ (2001) Solution structure of the third immunoglobulin domain of the neural cell adhesion molecule N-CAM: can solution studies define the mechanism of homophilic binding? J Mol Biol 311:161-172

    Article  PubMed  CAS  Google Scholar 

  14. Soroka V, Kolkova K, Kastrup JS, Diederichs K, Breed J, Kiselyov VV, Poulsen FM, Larsen IK, Welte W, Berezin V, Bock E, Kasper C (2003) Structure and interactions of NCAM Ig1-2-3 suggest a novel zipper mechanism for homophilic adhesion. Structure 11:1291-1301

    Article  PubMed  CAS  Google Scholar 

  15. Kiselyov VV, Skladchikova G, Hinsby AM, Jensen PH, Kulahin N, Soroka V, Pedersen N, Tsetlin V, Poulsen FM, Berezin V, Bock E (2003) Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 11:691-701

    Article  PubMed  CAS  Google Scholar 

  16. Mendiratta SS, Sekulic N, Hernandez-Guzman FG, Close BE, Lavie A, Colley KJ (2006) A novel alpha-helix in the first fibronectin type III repeat of the neural cell adhesion molecule is critical for N-glycan polysialylation. J Biol Chem 281:36052-36059

    Article  PubMed  CAS  Google Scholar 

  17. Nelson RW, Bates PA, Rutishauser U (1995) Protein determinants for specific polysialylation of the neural cell adhesion molecule. J Biol Chem 270:17171-17179

    Article  PubMed  CAS  Google Scholar 

  18. Kiss JZ, Rougon G (1997) Cell biology of polysialic acid. Curr Opin Neurobiol 7:640-646

    Article  PubMed  CAS  Google Scholar 

  19. Rougon G, Hobert O (2003) New insights into the diversity and function of neuronal immunoglobulin superfamily molecules. Annu Rev Neurosci 26:207-238

    Article  PubMed  CAS  Google Scholar 

  20. Bruses JL, Rutishauser U (2001) Roles, regulation, and mechanism of polysialic acid function during neural development. Biochimie 83:635-643

    Article  PubMed  CAS  Google Scholar 

  21. Berezin V, Bock E, Poulsen FM (2000) The neural cell adhesion molecule. Curr Opin Drug Discov Devel 3:605-609

    PubMed  CAS  Google Scholar 

  22. Cremer H, Chazal G, Goridis C, Represa A (1997) NCAM is essential for axonal growth and fasciculation in the hippocampus. Mol Cell Neurosci 8:323-335

    Article  PubMed  CAS  Google Scholar 

  23. Cremer H, Chazal G, Carleton A, Goridis C, Vincent JD, Lledo PM (1998) Long-term but not short-term plasticity at mossy fiber synapses is impaired in neural cell adhesion molecule-deficient mice. Proc Natl Acad Sci USA 95:13242-13247

    Article  PubMed  CAS  Google Scholar 

  24. Rønn LC, Hartz BP, Bock E (1998) The neural cell adhesion molecule (NCAM) in development and plasticity of the nervous system. Exp Gerontol 33:853-864

    Article  PubMed  Google Scholar 

  25. Rønn LC, Berezin V, Bock E (2000) The neural cell adhesion molecule in synaptic plasticity and ageing. Int J Dev Neurosci 18:193-199

    Article  PubMed  Google Scholar 

  26. Cambon K, Hansen SM, Venero C, Herrero AI, Skibo G, Berezin V, Bock E, Sandi C (2004) A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J Neurosci 24:4197-4204

    Article  PubMed  CAS  Google Scholar 

  27. Sandi C (2004) Stress, cognitive impairment and cell adhesion molecules. Nat Rev Neurosci 5:917-930

    Article  PubMed  CAS  Google Scholar 

  28. Rothbard JB, Brackenbury R, Cunningham BA, Edelman GM (1982) Differences in the carbohydrate structures of neural cell-adhesion molecules from adult and embryonic chicken brains. J Biol Chem 257:11064-11069

    PubMed  CAS  Google Scholar 

  29. Chuong CM, Edelman GM (1984) Alterations in neural cell adhesion molecules during development of different regions of the nervous system. J Neurosci 4:2354-2368

    PubMed  CAS  Google Scholar 

  30. Small SJ, Akeson R (1990) Expression of the unique NCAM VASE exon is independently regulated in distinct tissues during development. J Cell Biol 111:2089-2096

    Article  PubMed  CAS  Google Scholar 

  31. Seki T, Arai Y (1993) Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system. Neurosci Res 17:265-290

    Article  PubMed  CAS  Google Scholar 

  32. Williams EJ, Furness J, Walsh FS, Doherty P (1994) Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13:583-594

    Article  PubMed  CAS  Google Scholar 

  33. Beggs HE, Baragona SC, Hemperly JJ, Maness PF (1997) NCAM140 interacts with the focal adhesion kinase p125(fak) and the SRC-related tyrosine kinase p59(fyn). J Biol Chem 272:8310-8319

    Article  PubMed  CAS  Google Scholar 

  34. Schmid RS, Graff RD, Schaller MD, Chen S, Schachner M, Hemperly JJ, Maness PF (1999) NCAM stimulates the Ras-MAPK pathway and CREB phosphorylation in neuronal cells. J Neurobiol 38:542-558

    Article  PubMed  CAS  Google Scholar 

  35. Kolkova K, Novitskaya V, Pedersen N, Berezin V, Bock E (2000) Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway. J Neurosci 20:2238-2246

    PubMed  CAS  Google Scholar 

  36. Cole GJ, Schubert D, Glaser L (1985) Cell-substratum adhesion in chick neural retina depends upon protein-heparan sulfate interactions. J Cell Biol 100:1192-1199

    Article  PubMed  CAS  Google Scholar 

  37. Cole GJ, Glaser L (1986) A heparin-binding domain from N-CAM is involved in neural cell-substratum adhesion. J Cell Biol 102:403-412

    Article  PubMed  CAS  Google Scholar 

  38. Nybroe O, Moran N, Bock E (1989) Equilibrium binding analysis of neural cell adhesion molecule binding to heparin. J Neurochem 52:1947-1949

    Article  PubMed  CAS  Google Scholar 

  39. Grumet M, Flaccus A, Margolis RU (1993) Functional characterization of chondroitin sulfate proteoglycans of brain: interactions with neurons and neural cell adhesion molecules. J Cell Biol 120:815-824

    Article  PubMed  CAS  Google Scholar 

  40. Kiselyov VV, Berezin V, Maar TE, Soroka V, Edvardsen K, Schousboe A, Bock E (1997) The first immunoglobulin-like neural cell adhesion molecule (NCAM) domain is involved in double-reciprocal interaction with the second immunoglobulin-like NCAM domain and in heparin binding. J Biol Chem 272:10125-10134

    Article  PubMed  CAS  Google Scholar 

  41. Probstmeier R, Kuhn K, Schachner M (1989) Binding properties of the neural cell adhesion molecule to different components of the extracellular matrix. J Neurochem 53:1794-1801

    Article  PubMed  CAS  Google Scholar 

  42. Horstkorte R, Schachner M, Magyar JP, Vorherr T, Schmitz B (1993) The fourth immunoglobulin-like domain of NCAM contains a carbohydrate recognition domain for oligomannosidic glycans implicated in association with L1 and neurite outgrowth. J Cell Biol 121:1409-1421

    Article  PubMed  CAS  Google Scholar 

  43. Milev P, Maurel P, Haring M, Margolis RK, Margolis RU (1996) TAG-1/axonin-1 is a high-affinity ligand of neurocan, phosphacan/protein-tyrosine phosphatase-zeta/beta, and N-CAM. J Biol Chem 271:15716-15723

    Article  PubMed  CAS  Google Scholar 

  44. Friedlander DR, Milev P, Karthikeyan L, Margolis RK, Margolis RU, Grumet M (1994) The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion molecules Ng-CAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth. J Cell Biol 125:669-680

    Article  PubMed  CAS  Google Scholar 

  45. Milev P, Friedlander DR, Sakurai T, Karthikeyan L, Flad M, Margolis RK, Grumet M, Margolis RU (1994) Interactions of the chondroitin sulfate proteoglycan phosphacan, the extracellular domain of a receptor-type protein tyrosine phosphatase, with neurons, glia, and neural cell adhesion molecules. J Cell Biol 127:1703-1715

    Article  PubMed  CAS  Google Scholar 

  46. Storms SD, Kim AC, Tran BH, Cole GJ, Murray BA (1996) NCAM-mediated adhesion of transfected cells to agrin. Cell Adhes Commun 3:497-509

    Article  PubMed  CAS  Google Scholar 

  47. Paratcha G, Ledda F, Ibanez CF (2003) The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113:867-879

    Article  PubMed  CAS  Google Scholar 

  48. Dzhandzhugazyan K, Bock E (1993) Demonstration of (Ca(2+)-Mg2+)-ATPase activity of the neural cell adhesion molecule. FEBS Lett 336:279-283

    Article  PubMed  CAS  Google Scholar 

  49. Dzhandzhugazyan K, Bock E (1997) Demonstration of an extracellular ATP-binding site in NCAM: functional implications of nucleotide binding. Biochemistry 36:15381-15395

    Article  PubMed  CAS  Google Scholar 

  50. Crossin KL, Tai MH, Krushel LA, Mauro VP, Edelman GM (1997) Glucocorticoid receptor pathways are involved in the inhibition of astrocyte proliferation. Proc Natl Acad Sci USA 94:2687-2692

    Article  PubMed  CAS  Google Scholar 

  51. Schmitt-Ulms G, Legname G, Baldwin MA, Ball HL, Bradon N, Bosque PJ, Crossin KL, Edelman GM, DeArmond SJ, Cohen FE, Prusiner SB (2001) Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol 314:1209-1225

    Article  PubMed  CAS  Google Scholar 

  52. Vutskits L, Djebbara-Hannas Z, Zhang H, Paccaud JP, Durbec P, Rougon G, Muller D, Kiss JZ (2001) PSA-NCAM modulates BDNF-dependent survival and differentiation of cortical neurons. Eur J NeuroSci 13:1391-1402

    Article  PubMed  CAS  Google Scholar 

  53. Zhang H, Vutskits L, Calaora V, Durbec P, Kiss JZ (2004) A role for the polysialic acid-neural cell adhesion molecule in PDGF-induced chemotaxis of oligodendrocyte precursor cells. J Cell Sci 117:93-103

    Article  PubMed  CAS  Google Scholar 

  54. Thoulouze MI, Lafage M, Schachner M, Hartmann U, Cremer H, Lafon M (1998) The neural cell adhesion molecule is a receptor for rabies virus. J Virol 72:7181-7190

    PubMed  CAS  Google Scholar 

  55. Pollerberg GE, Schachner M, Davoust J (1986) Differentiation state-dependent surface mobilities of two forms of the neural cell adhesion molecule. Nature 324:462-465

    Article  PubMed  CAS  Google Scholar 

  56. Buttner B, Kannicht C, Reutter W, Horstkorte R (2003) The neural cell adhesion molecule is associated with major components of the cytoskeleton. Biochem Biophys Res Commun 310:967-971

    Article  PubMed  Google Scholar 

  57. Ditlevsen DK, Povlsen GK, Berezin V, Bock E (2008) NCAM-induced intracellular signaling revisited. J Neurosci Res 86:727-43

    Google Scholar 

  58. Hinsby AM, Berezin V, Bock E (2004) Molecular mechanisms of NCAM function. Front Biosci 9:2227-2244

    Article  PubMed  CAS  Google Scholar 

  59. Povlsen GK, Ditlevsen DK, Berezin V, Bock E (2003) Intracellular signaling by the neural cell adhesion molecule. Neurochem Res 28:127-141

    Article  PubMed  CAS  Google Scholar 

  60. Crossin KL, Krushel LA (2000) Cellular signaling by neural cell adhesion molecules of the immunoglobulin superfamily. Dev Dyn 218:260-279

    Article  PubMed  CAS  Google Scholar 

  61. Rao Y, Wu XF, Gariepy J, Rutishauser U, Siu CH (1992) Identification of a peptide sequence involved in homophilic binding in the neural cell adhesion molecule NCAM. J Cell Biol 118:937-949

    Article  PubMed  CAS  Google Scholar 

  62. Rao Y, Wu XF, Yip P, Gariepy J, Siu CH (1993) Structural characterization of a homophilic binding site in the neural cell adhesion molecule. J Biol Chem 268:20630-20638

    PubMed  CAS  Google Scholar 

  63. Ranheim TS, Edelman GM, Cunningham BA (1996) Homophilic adhesion mediated by the neural cell adhesion molecule involves multiple immunoglobulin domains. Proc Natl Acad Sci USA 93:4071-4075

    Article  PubMed  CAS  Google Scholar 

  64. Atkins AR, Osborne MJ, Lashuel HA, Edelman GM, Wright PE, Cunningham BA, Dyson HJ (1999) Association between the first two immunoglobulin-like domains of the neural cell adhesion molecule N-CAM. FEBS Lett 451:162-168

    Article  PubMed  CAS  Google Scholar 

  65. Kiselyov VV, Soroka V, Berezin V, Bock E (2005) Structural biology of NCAM homophilic binding and activation of FGFR. J Neurochem 94:1169-1179

    Article  PubMed  CAS  Google Scholar 

  66. Johnson CP, Fujimoto I, Perrin-Tricaud C, Rutishauser U, Leckband D (2004) Mechanism of homophilic adhesion by the neural cell adhesion molecule: use of multiple domains and flexibility. Proc Natl Acad Sci USA 101:6963-6968

    Article  PubMed  CAS  Google Scholar 

  67. McKeehan WL, Wang F, Kan M (1998) The heparan sulfate-fibroblast growth factor family: diversity of structure and function. Prog Nucleic Acid Res Mol Biol 59:135-176

    Article  PubMed  CAS  Google Scholar 

  68. Plotnikov AN, Schlessinger J, Hubbard SR, Mohammadi M (1999) Structural basis for FGF receptor dimerization and activation. Cell 98:641-650

    Article  PubMed  CAS  Google Scholar 

  69. Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL (2000) Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature 407:1029-1034

    Article  PubMed  CAS  Google Scholar 

  70. Wang F, Kan M, Yan G, Xu J, McKeehan WL (1995) Alternately spliced NH2-terminal immunoglobulin-like Loop I in the ectodomain of the fibroblast growth factor (FGF) receptor 1 lowers affinity for both heparin and FGF-1. J Biol Chem 270:10231-10235

    Article  PubMed  CAS  Google Scholar 

  71. Olsen SK, Ibrahimi OA, Raucci A, Zhang F, Eliseenkova AV, Yayon A, Basilico C, Linhardt RJ, Schlessinger J, Mohammadi M (2004) Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligand-binding promiscuity. Proc Natl Acad Sci USA 101:935-940

    Article  PubMed  CAS  Google Scholar 

  72. Kiselyov VV, Bock E, Berezin V, Poulsen FM (2006) NMR structure of the first Ig module of mouse FGFR1. Protein Sci 15:1512-1515

    Article  PubMed  CAS  Google Scholar 

  73. Kiselyov VV, Kochoyan A, Poulsen FM, Bock E, Berezin V (2006) Elucidation of the mechanism of the regulatory function of the Ig1 module of the fibroblast growth factor receptor 1. Protein Sci 15:2318-2322

    Article  PubMed  CAS  Google Scholar 

  74. Mohammadi M, Olsen SK, Ibrahimi OA (2005) Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 16:107-137

    Article  PubMed  CAS  Google Scholar 

  75. Niethammer P, Delling M, Sytnyk V, Dityatev A, Fukami K, Schachner M (2002) Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J Cell Biol 157:521-532

    Article  PubMed  CAS  Google Scholar 

  76. Christensen C, Lauridsen JB, Berezin V, Bock E, Kiselyov VV (2006) The neural cell adhesion molecule binds to fibroblast growth factor receptor 2. FEBS Lett 580:3386-3390

    Article  PubMed  CAS  Google Scholar 

  77. Neiiendam JL, Kohler LB, Christensen C, Li S, Pedersen MV, Ditlevsen DK, Kornum MK, Kiselyov VV, Berezin V, Bock E (2004) An NCAM-derived FGF-receptor agonist, the FGL-peptide, induces neurite outgrowth and neuronal survival in primary rat neurons. J Neurochem 91:920-935

    Article  PubMed  CAS  Google Scholar 

  78. Skibo GG, Lushnikova IV, Voronin KY, Dmitrieva O, Novikova T, Klementiev B, Vaudano E, Berezin VA, Bock E (2005) A synthetic NCAM-derived peptide, FGL, protects hippocampal neurons from ischemic insult both in vitro and in vivo. Eur J NeuroSci 22:1589-1596

    Article  PubMed  Google Scholar 

  79. Secher T, Novitskaia V, Berezin V, Bock E, Glenthøj B, Klementiev B (2006) A neural cell adhesion molecule-derived fibroblast growth factor receptor agonist, the FGL-peptide, promotes early postnatal sensorimotor development and enhances social memory retention. Neuroscience 141:1289-1299

    Article  PubMed  CAS  Google Scholar 

  80. Klementiev B, Novikova T, Novitskaya V, Walmod PS, Dmytriyeva O, Pakkenberg B, Berezin V, Bock E (2007) A neural cell adhesion molecule-derived peptide reduces neuropathological signs and cognitive impairment induced by Abeta25-35. Neuroscience 145:209-224

    Article  PubMed  CAS  Google Scholar 

  81. Sanchez-Heras E, Howell FV, Williams G, Doherty P (2006) The fibroblast growth factor receptor acid box is essential for interactions with N-cadherin and all of the major isoforms of neural cell adhesion molecule. J Biol Chem 281:35208-35216

    Article  PubMed  CAS  Google Scholar 

  82. Doherty P, Walsh FS (1996) CAM-FGF receptor interactions: a model for axonal growth. Mol Cell Neurosci 8:99-111

    Article  CAS  Google Scholar 

  83. Pantoliano MW, Horlick RA, Springer BA, Van Dyk DE, Tobery T, Wetmore DR, Lear JD, Nahapetian AT, Bradley JD, Sisk WP (1994) Multivalent ligand-receptor binding interactions in the fibroblast growth factor system produce a cooperative growth factor and heparin mechanism for receptor dimerization. Biochemistry 33:10229-10248

    Article  PubMed  CAS  Google Scholar 

  84. Wang F, Kan M, McKeehan K, Jang JH, Feng S, McKeehan WL (1997) A homeo-interaction sequence in the ectodomain of the fibroblast growth factor receptor. J Biol Chem 272:23887-23895

    Article  PubMed  CAS  Google Scholar 

  85. Hinsby AM, Olsen JV, Bennett KL, Mann M (2003) Signaling initiated by overexpression of the fibroblast growth factor receptor-1 investigated by mass spectrometry. Mol Cell Proteomics 2:29-36

    Article  PubMed  CAS  Google Scholar 

  86. Doherty P, Cohen J, Walsh FS (1990) Neurite outgrowth in response to transfected N-CAM changes during development and is modulated by polysialic acid. Neuron 5:209-219

    Article  PubMed  CAS  Google Scholar 

  87. Sadoul R, Hirn M, Deagostini-Bazin H, Rougon G, Goridis C (1983) Adult and embryonic mouse neural cell adhesion molecules have different binding properties. Nature 304:347-349

    Article  PubMed  CAS  Google Scholar 

  88. Rutishauser U, Acheson A, Hall AK, Mann DM, Sunshine J (1988) The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science 240:53-57

    Article  PubMed  CAS  Google Scholar 

  89. Yang P, Yin X, Rutishauser U (1992) Intercellular space is affected by the polysialic acid content of NCAM. J Cell Biol 116:1487-1496

    Article  PubMed  CAS  Google Scholar 

  90. Evans RJ, Derkach V, Surprenant A (1992) ATP mediates fast synaptic transmission in mammalian neurons. Nature 357:503-505

    Article  PubMed  CAS  Google Scholar 

  91. Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359:144-147

    Article  PubMed  CAS  Google Scholar 

  92. Skladchikova G, Ronn LC, Berezin V, Bock E (1999) Extracellular adenosine triphosphate affects neural cell adhesion molecule (NCAM)-mediated cell adhesion and neurite outgrowth. J Neurosci Res 57:207-218

    Article  PubMed  CAS  Google Scholar 

  93. Itoh N, Ornitz DM (2004) Evolution of the Fgf and Fgfr gene families. Trends Genet 20:563-569

    Article  PubMed  CAS  Google Scholar 

  94. Shimizu A, Tada K, Shukunami C, Hiraki Y, Kurokawa T, Magane N, Kurokawa-Seo M (2001) A novel alternatively spliced fibroblast growth factor receptor 3 isoform lacking the acid box domain is expressed during chondrogenic differentiation of ATDC5 cells. J Biol Chem 276:11031-11040

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav V. Kiselyov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kiselyov, V.V. (2010). NCAM and the FGF-Receptor. In: Berezin, V. (eds) Structure and Function of the Neural Cell Adhesion Molecule NCAM. Advances in Experimental Medicine and Biology, vol 663. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1170-4_4

Download citation

Publish with us

Policies and ethics