Skip to main content

Comparative Clocks

  • Chapter
  • First Online:
The Circadian Clock

Part of the book series: Protein Reviews ((PRON,volume 12))

Abstract

Daily biological clocks have been described in organisms from all phyla. Here, we describe some features of these temporal programs in model experimental systems from bacteria to humans, from fungi to plants. The comparative approach initially delivered the transcriptional feedback loop as a fundamental clock mechanism. In addition to early reports showing translational regulation in the algae, data from several model genetic systems now indicates that multiple non-transcriptional mechanisms rooted in metabolism form feedbacks in cellular clocks. The incorporation of metabolic feedbacks into the clock suggests a mechanism by which the clock is adaptive and why it confers fitness. It also challenges our concepts of metabolic forms of compensation (e.g., temperature and nutrition). We anticipate that we will soon see demonstrations that circadian clocks are truly widespread throughout nature, regulated by similar cellular pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roenneberg T, Merrow M (1999) Circadian clocks and metabolism. J Biol Rhythms 14:449–459

    Article  PubMed  CAS  Google Scholar 

  2. Roenneberg T, Merrow M (1998) Molecular circadian oscillators – an alternative hypothesis. J Biol Rhythms 13:167–179

    Article  PubMed  CAS  Google Scholar 

  3. McWatters HG, Bastow RM, Hall A, Millar AJ (2000) The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature 408:716–720

    Article  PubMed  CAS  Google Scholar 

  4. De Mairan JJDO (1729) Observation botanique. Histoir de l’Academie Royale des Science, Paris, pp 35–36

    Google Scholar 

  5. Pregueiro A, Price-Lloyd N, Bell-Pedersen D, Heintzen C, Loros JJ, Dunlap JC (2005) Assignment of an essential role for the Neurospora frequency gene in circadian entrainment to temperature cycles. Proc Natl Acad Sci USA 102:2210–2215

    Article  PubMed  CAS  Google Scholar 

  6. Roenneberg T, Dragovic Z, Merrow M (2005) Demasking biological oscillators: properties and principles of entrainment exemplified by the Neurospora circadian clock. Proc Natl Acad Sci USA 102:7742–7747

    Article  PubMed  CAS  Google Scholar 

  7. Merrow M, Brunner M, Roenneberg T (1999) Assignment of circadian function for the Neurospora clock gene frequency. Nature 399:584–586

    Article  PubMed  CAS  Google Scholar 

  8. Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12:1574–1583

    Article  PubMed  CAS  Google Scholar 

  9. Michael TP, Mockler TC, Breton G, McEntee C, Byer A, Trout JD, Hazen SP, Shen R, Priest HD, Sullivan CM et al (2008) Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet 4:e14

    Article  PubMed  CAS  Google Scholar 

  10. Hicks KA, Millar AJ, Carré IA, Somers DE, Straume M, Meeks-Wagner R, Kay SA (1996) Conditional circadian dysfuncion of the Arabidopsis early-flowering 3 mutant. Science 274:790–792

    Article  PubMed  CAS  Google Scholar 

  11. Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AA (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    Article  PubMed  CAS  Google Scholar 

  12. James AB, Monreal JA, Nimmo GA, Kelly CL, Herzyk P, Jenkins GI, Nimmo HG (2008) The circadian clock in Arabidopsis roots is a simplified slave version of the clock in shoots. Science 322:1832–1835

    Article  PubMed  CAS  Google Scholar 

  13. Thain SC, Hall A, Millar AJ (2000) Functional independence of circadian clocks that regulate plant gene expression. Curr Biol 10:951–956

    Article  PubMed  CAS  Google Scholar 

  14. Rascher U, Hutt MT, Siebke K, Osmond B, Beck F, Luttge U (2001) Spatiotemporal variation of metabolism in a plant circadian rhythm: the biological clock as an assembly of coupled individual oscillators. Proc Natl Acad Sci USA 98:11801–11805

    Article  PubMed  CAS  Google Scholar 

  15. Anderson SL, Somers-DE DE, Millar AJ, Hanson K, Chory J, Kay SA (1997) Attenuation of phytochrome A and B signaling pathways by the Arabidopsis circadian clock. Plant Cell 9:1727–1743

    Article  PubMed  CAS  Google Scholar 

  16. Hastings JW, Sweeney BM (1958) A persistent diurnal rhythm of luminescence in Gonyaulax polyedra. Biol Bull 115:440–458

    Article  Google Scholar 

  17. Millar AJ, Straume M, Chory J, Chua NH, Kay SA (1995) The regulation of circadian period by phototransduction pathways in Arabidopsis. Science 267:1163–1166

    Article  PubMed  CAS  Google Scholar 

  18. Somers DE, Devlin PF, Kay SA (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282:1488–1490

    Article  PubMed  CAS  Google Scholar 

  19. Nakamichi N, Matsushika A, Yamashino T, Mizuno T (2003) Cell autonomous circadian waves of the APRR1/TOC1 Quintet in an established cell line of Arabidopsis thaliana. Plant Cell Physiol 44:360–365

    Article  PubMed  CAS  Google Scholar 

  20. Locke JC, Southern MM, Kozma-Bognar L, Hibberd V, Brown PE, Turner MS, Millar AJ (2005) Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol 1(2005):0013

    PubMed  Google Scholar 

  21. Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883

    Article  PubMed  CAS  Google Scholar 

  22. Wang ZY, Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207–1217

    Article  PubMed  CAS  Google Scholar 

  23. Somers DE, Schultz TF, Milnamow M, Kay SA (2000) ZEITLUPE encodes a novel clock associated PAS protein from Arabidobsis. Cell 101:319–329

    Article  PubMed  CAS  Google Scholar 

  24. Dodd AN, Gardner MJ, Hotta CT, Hubbard KE, Dalchau N, Love J, Assie JM, Robertson FC, Jakobsen MK, Goncalves J et al (2007) The Arabidopsis circadian clock incorporates a cADPR-based feedback loop. Science 318:1789–1792

    Article  PubMed  CAS  Google Scholar 

  25. Michael TP, Breton G, Hazen SP, Priest H, Mockler TC, Kay SA, Chory J (2008) A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol 6:e225

    Article  PubMed  CAS  Google Scholar 

  26. Eimert K, Wang SM, Lue WI, Chen J (1995) Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis. Plant Cell 7:1703–1712

    Article  PubMed  CAS  Google Scholar 

  27. Roenneberg T (1996) The complex circadian system of Gonyaulax polyedra. Physiol Plant 96:733–737

    Article  CAS  Google Scholar 

  28. Deng T-S, Roenneberg T (1997) Photobiology of the Gonyaulax circadian system: II Allopurinol inhibits blue light effects. Planta 202:502–509

    Article  CAS  Google Scholar 

  29. Roenneberg T, Deng T-S (1997) Photobiology of the Gonyaulax circadian system: I different phase response curves for red and blue light. Planta 202:494–501

    Article  CAS  Google Scholar 

  30. Mittag M, Lee D-H, Hastings JW (1994) Circadian expression of the luciferin-binding protein correlates with the binding of a protein to the 3′ untranslated region of its mRNA. Proc Natl Acad Sci USA 91:5257–5261

    Article  PubMed  CAS  Google Scholar 

  31. Lee D-H, Mittag M, Sczekan S, Morse D, Hastings JW (1993) Molecular cloning and genomic organization of a gene for luciferin-binding protein from the dinoflagellate Gonyaulax polyedra. J Biol Chem 268:8842–8850

    PubMed  CAS  Google Scholar 

  32. Mittag M (1996) Conserved circadian elements in phylogenetically diverse algae. Proc Natl Acad Sci USA 93:14401–14404

    Article  PubMed  CAS  Google Scholar 

  33. Byrne TE, Wells MR, Johnson CH (1992) Circadian rhythms of chemotaxis to ammonium and of methylammonium uptake in Chlamydomonas. Plant Physiol 98:879–886

    Article  PubMed  CAS  Google Scholar 

  34. Mori T, Binder B, Johnson CH (1996) Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. Proc Natl Acad Sci USA 93:10183–10188

    Article  PubMed  CAS  Google Scholar 

  35. Nikaido SS, Johnson CH (2000) Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii. Photochem Photobiol 71:758–765

    Article  PubMed  CAS  Google Scholar 

  36. Brunner M, Merrow M (2008) The green yeast uses its plant-like clock to regulate its animal-like tail. Genes Dev 22:825–831

    Article  PubMed  CAS  Google Scholar 

  37. Matsuo T, Okamoto K, Onai K, Niwa Y, Shimogawara K, Ishiura M (2008) A systematic forward genetic analysis identified components of the Chlamydomonas circadian system. Genes Dev 22:918–930

    Article  PubMed  CAS  Google Scholar 

  38. Moulager M, Monnier A, Jesson B, Bouvet R, Mosser J, Schwartz C, Garnier L, Corellou F, Bouget FY (2007) Light-dependent regulation of cell division in Ostreococcus: evidence for a major transcriptional input. Plant Physiol 144:1360–1369

    Article  PubMed  CAS  Google Scholar 

  39. Bruce VC, Weight F, Pittendrigh CS (1960) Resetting the sporulation rhythm in Pilobolus with short light flashes of high intensity. Science 131:728–730

    Article  PubMed  CAS  Google Scholar 

  40. Uebelmesser E-R (1954) Über den endogenen Tagesrhythmus der Sporangienbildung von Pilobolus. Arch Mikrobiol 20:1–33

    Article  PubMed  CAS  Google Scholar 

  41. Pittendrigh CS, Bruce VG, Rosensweig NS, Rubin ML (1959) Growth patterns in Neurospora crassa. Nature 184:169–170

    Article  Google Scholar 

  42. Merrow M, Roenneberg T, Macino G, Franchi L (2001) A fungus among us: the Neurospora crassa circadian system. Semin Cell Dev Biol 12:279–285

    Article  PubMed  CAS  Google Scholar 

  43. Tan Y, Merrow M, Roenneberg T (2004) Photoperiodism in Neurospora crassa. J Biol Rhythms 19:135–143

    Article  PubMed  Google Scholar 

  44. Aronson BD, Johnson KA, Loros JJ, Dunlap JC (1994) Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science 263:1578–1584

    Article  PubMed  CAS  Google Scholar 

  45. Crosthwaite SK, Dunlap JC, Loros JJ (1997) Neurospora wc-1 and wc-2: transcription, photoresponses, and the origin of circadian rhythmicity. Science 276:763–769

    Article  PubMed  CAS  Google Scholar 

  46. Dragovic Z, Tan Y, Görl M, Roenneberg T, Merrow M (2002) Light reception and circadian behavior in “blind” and “clock-less” mutants of Neurospora crassa. EMBO J 21:3643–3651

    Article  PubMed  CAS  Google Scholar 

  47. Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G (1996) White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15:1650–1657

    PubMed  CAS  Google Scholar 

  48. Chen CH, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ (2009) Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J 28:1029–1042

    Article  PubMed  CAS  Google Scholar 

  49. Heintzen C, Loros JJ, Dunlap JC (2001) The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104:453–464

    Article  PubMed  CAS  Google Scholar 

  50. Shrode LB, Lewis ZA, White LD, Bell-Pedersen D, Ebbole DJ (2001) vvd is required for light adaptation of conidiation-specific genes of Neurospora crassa, but not circadian conidiation. Fungal Genet Biol 32:169–181

    Article  PubMed  CAS  Google Scholar 

  51. Querfurth C, Diernfellner A, Heise F, Lauinger L, Neiss A, Tataroglu O, Brunner M, Schafmeier T (2007) Posttranslational regulation of Neurospora circadian clock by CK1a-dependent phosphorylation. Cold Spring Harb Symp Quant Biol 72:177–183

    Article  PubMed  CAS  Google Scholar 

  52. Yang Y, He Q, Cheng P, Wrage P, Yarden O, Liu Y (2004) Distinct roles for PP1 and PP2A in the Neurospora circadian clock. Genes Dev 18:255–260

    Article  PubMed  CAS  Google Scholar 

  53. Yang Y, Cheng P, Liu Y (2002) Regulation of the Neurospora circadian clock by casein kinase II. Genes Dev 16:994–1006

    Article  PubMed  CAS  Google Scholar 

  54. He Q, Cheng P, He Q, Liu Y (2005) The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex. Genes Dev 19:1518–1531

    Article  PubMed  CAS  Google Scholar 

  55. Schaffmeier T, Haase A, Kaldi K, Scholz J, Fuchs M, Brunner M (2005) Transcriptional feedback of Neurospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor. Cell 122:235–246

    Article  CAS  Google Scholar 

  56. Aronson BD, Johnson KA, Dunlap JC (1994) The circadian clock locus frequency: a single ORF defines period length and temperature compensation. Proc Natl Acad Sci USA 91:7683–7687

    Article  PubMed  CAS  Google Scholar 

  57. Correa A, Lewis ZA, Greene AV, March IJ, Gomer RH, Bell-Pedersen D (2003) Multiple oscillators regulate circadian gene expression in Neurospora. Proc Natl Acad Sci USA 100:13597–13602

    Article  PubMed  CAS  Google Scholar 

  58. Christensen MK, Falkeid G, Loros JJ, Dunlap JC, Lillo C, Ruoff P (2004) A nitrate-induced frq-less oscillator in Neurospora crassa. J Biol Rhythms 19:280–286

    Article  PubMed  CAS  Google Scholar 

  59. Diernfellner A, Colot HV, Dintsis O, Loros JJ, Dunlap JC, Brunner M (2007) Long and short isoforms of Neurospora clock protein FRQ support temperature-compensated circadian rhythms. FEBS Lett 581:5759–5764

    Article  PubMed  CAS  Google Scholar 

  60. Diernfellner AC, Schafmeier T, Merrow MW, Brunner M (2005) Molecular mechanism of temperature sensing by the circadian clock of Neurospora crassa. Genes Dev 19:1968–1973

    Article  PubMed  CAS  Google Scholar 

  61. Loros JJ, Denome SA, Dunlap JC (1989) Molecular cloning of genes under control of the circadian clock in Neurospora. Science 243:385–388

    Article  PubMed  CAS  Google Scholar 

  62. Brody S, Harris S (1973) Circadian rhythms in Neurospora: spatial differences in pyridine nucleotide levels. Science 180:498–500

    Article  PubMed  CAS  Google Scholar 

  63. Greene AV, Keller N, Haas H, Bell-Pedersen D (2003) A circadian oscillator in Aspergillus spp. regulates daily development and gene expression. Eukaryot Cell 2:231–237

    Article  PubMed  CAS  Google Scholar 

  64. Edmunds LN Jr (1988) Cellular and molecular bases of biological clocks: models and mechanisms of circadian time keeping. Springer, New York

    Google Scholar 

  65. Rutter J, Probst BL, McKnight SL (2002) Coordinate regulation of sugar flux and translation by PAS kinase. Cell 111:17–28

    Article  PubMed  CAS  Google Scholar 

  66. Klevecz RR, Bolen J, Forrest G, Murray DB (2004) A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc Natl Acad Sci USA 101:1200–1205

    Article  PubMed  CAS  Google Scholar 

  67. Tu BP, Kudlicki A, Rowicka M, McKnight SL (2005) Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310:1152–1158

    Article  PubMed  CAS  Google Scholar 

  68. Tu BP, McKnight SL (2006) Metabolic cycles as an underlying basis of biological oscillations. Nat Rev Mol Cell Biol 7:696–701

    Article  PubMed  CAS  Google Scholar 

  69. Konopka R, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68:2112–2116

    Article  PubMed  CAS  Google Scholar 

  70. Pittendrigh CS (1960) Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol 25:159–184

    PubMed  CAS  Google Scholar 

  71. Stoleru D, Peng Y, Agosto J, Rosbash M (2004) Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431:862–868

    Article  PubMed  CAS  Google Scholar 

  72. Grima B, Chélot E, Xia R, Rouyer F (2004) Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431:869–873

    Article  PubMed  CAS  Google Scholar 

  73. Emerson KJ, Bradshaw WE, Holzapfel CM (2009) Complications of complexity: integrating environmental, genetic and hormonal control of insect diapause. Trends Genet 25(5): 217–225

    Google Scholar 

  74. Veleri S, Brandes C, Helfrich-Förster C, Hall JC, Stanewsky R (2003) A self-sustaining, light-entrainable circadian oscillator in the Drosophila brain. Curr Biol 13:1758–1767

    Article  PubMed  CAS  Google Scholar 

  75. Hege DM, Stanewsky R, Hall JC, Giebultowicz JM (1997) Rhythmic expression of a PER-reporter in the Malpighian tubules of decapitated Drosophila: evidence for a brain-independent circadian clock. J Biol Rhythms 12:300–308

    Article  PubMed  CAS  Google Scholar 

  76. Plautz JD, Kaneko M, Hall JC, Kay SA (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278:1632–1635

    Article  PubMed  CAS  Google Scholar 

  77. Giebultowicz JM, Stanewsky R, Hall JC, Hege DM (2000) Transplanted Drosophila excretory tubules maintain circadian clock cycling out of phase with the host. Curr Biol 10:107–110

    Article  PubMed  CAS  Google Scholar 

  78. Stanewsky R, Kaneko M, Emery P, Beretta B, Wagner-Smith K, Kay SA, Rosbash M, Hall JC (1998) The cry b mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95:681–692

    Article  PubMed  CAS  Google Scholar 

  79. Helfrich-Förster C, Winter C, Hofbauer A, Hall JC, Stanewsky R (2001) The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron 30:249–261

    Article  PubMed  Google Scholar 

  80. Dissel S, Codd V, Fedic R, Garner KJ, Costa R, Kyriacou CP, Rosato E (2004) A constitutively active cryptochrome in Drosophila melanogaster. Nat Neurosci 7:834–840

    Article  PubMed  CAS  Google Scholar 

  81. Hardin PE, Hall JC, Rosbash M (1990) Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343:536–540

    Article  PubMed  CAS  Google Scholar 

  82. Glossop NRG, Lyons LC, Hardin PE (1999) Interlocked feedback loops within the Drosophila circadian oscillator. Science 286:766–778

    Article  PubMed  CAS  Google Scholar 

  83. Young MW, Kay SA (2001) Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2:702–715

    Article  PubMed  CAS  Google Scholar 

  84. Saunders DS (ed) (1982) Insect clocks. Pergamon, Oxford, UK

    Google Scholar 

  85. Meinertzhagen IA, Pyza E (1996) Daily rhythms in cells of the flys optic lobe: taking time out from the circadian clock. Trends Neurosci 19:285–291

    Article  PubMed  CAS  Google Scholar 

  86. Codd V, Dolezel D, Stehlik J, Piccin A, Garner KJ, Racey SN, Straatman KR, Louis EJ, Costa R, Sauman I et al (2007) Circadian rhythm gene regulation in the housefly Musca domestica. Genetics 177:1539–1551

    Article  PubMed  CAS  Google Scholar 

  87. Mazzotta GM, Sandrelli F, Zordan MA, Mason M, Benna C, Cisotto P, Rosato E, Kyriacou CP, Costa R (2005) The clock gene period in the medfly Ceratitis capitata. Genet Res 86:13–30

    Article  PubMed  CAS  Google Scholar 

  88. Kenny NAP, Saunders DS (1991) Adult locomotor rhythmicity as “hands” of the maternal photoperiodic clock regulating larval diapause in the Blowfly, Calliphora vicina. J Biol Rhythms 6:217–235

    Article  PubMed  CAS  Google Scholar 

  89. Tournier BB, Dardente H, Simonneaux V, Vivien-Roels B, Pevet P, Masson-Pevet M, Vuillez P (2007) Seasonal variations of clock gene expression in the suprachiasmatic nuclei and pars tuberalis of the European hamster (Cricetus cricetus). Eur J NeuroSci 25:1529–1536

    Article  PubMed  Google Scholar 

  90. Hamada T, Antle MC, Silver R (2004) Temporal and spatial expression patterns of canonical clock genes and clock-controlled genes in the suprachiasmatic nucleus. Eur J NeuroSci 19:1741–1748

    Article  PubMed  Google Scholar 

  91. Damiola F, Minh NL, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961

    Article  PubMed  CAS  Google Scholar 

  92. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657

    Article  PubMed  CAS  Google Scholar 

  93. Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C et al (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–654

    Article  PubMed  CAS  Google Scholar 

  94. Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P (2007) CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450:1086–1090

    Article  PubMed  CAS  Google Scholar 

  95. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Article  PubMed  CAS  Google Scholar 

  96. Panda S, Antoch MP, Millar BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320

    Article  PubMed  CAS  Google Scholar 

  97. Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83

    Article  PubMed  CAS  Google Scholar 

  98. Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smoth AG, Gant TW, Hastings MH, Kyriacou CP (2001) Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12:540–550

    Article  Google Scholar 

  99. Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, O’Neill JS, Wong GK, Chesham J, Odell M, Lilley KS et al (2006) Circadian orchestration of the hepatic proteome. Curr Biol 16:1107–1115

    Article  PubMed  CAS  Google Scholar 

  100. Doyle SE, Castrucci AM, McCall M, Provencio I, Menaker M (2006) Nonvisual light responses in the Rpe65 knockout mouse: rod loss restores sensitivity to the melanopsin system. Proc Natl Acad Sci USA 103:10432–10437

    Article  PubMed  CAS  Google Scholar 

  101. Roenneberg T, Kumar CJ, Merrow M (2007) The human circadian clock entrains to sun time. Curr Biol 17:R44–R45

    Article  PubMed  CAS  Google Scholar 

  102. Aschoff J (1967) Human circadian rhythms in activity, body temperature and other functions. Life Sci Space Res 5:159–173

    PubMed  CAS  Google Scholar 

  103. Aschoff J (1965) Circadian rhythms in man. Science 148:1427–1432

    Article  PubMed  CAS  Google Scholar 

  104. Roenneberg T, Wirz-Justice A, Merrow M (2003) Life between clocks – daily temporal patterns of human chronotypes. J Biol Rhythms 18:80–90

    Article  PubMed  Google Scholar 

  105. Wittmann M, Dinich J, Merrow M, Roenneberg T (2006) Social jetlag: misalignment of biological and social time. Chronobiol Int 23:497–509

    Article  PubMed  Google Scholar 

  106. Kanterman T, Juda M, Merrow M, Roenneberg T (2007) The human circadian clock’s seasonal adjustment is disrupted by daylight saving time. Curr Biol 17:1996–2000

    Article  CAS  Google Scholar 

  107. Roenneberg T, Kuehnle T, Pramstaller PP, Ricken J, Havel M, Guth A, Merrow M (2004) A marker for the end of adolescence. Curr Biol 14:R1038–R1039

    Article  PubMed  CAS  Google Scholar 

  108. Schwartz WJ, Busis NA, Hedley-Whyte ET (1986) A discrete lesion of ventral hypothalamus and optic chiasm that disturbed the daily temperature rhythm. J Neurol 233:1–4

    Article  PubMed  CAS  Google Scholar 

  109. Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptacek LJ, Fu YH (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043

    Article  PubMed  CAS  Google Scholar 

  110. Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptacek LJ, Fu Y-H (2005) Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature 434:640–644

    Article  PubMed  CAS  Google Scholar 

  111. Baggs JE, Price TS, DiTacchio L, Panda S, Fitzgerald GA, Hogenesch JB (2009) Network features of the mammalian circadian clock. PLoS Biol 7:e52

    Article  PubMed  CAS  Google Scholar 

  112. Mitsui A, Kumazawa S, Takahashi A, Ikemoto H, Cao S, Arai T (1986) Strategy by which nitrogen-fixing unicellular cyanobacteria grow phototrophically. Nature 323:720–733

    Article  CAS  Google Scholar 

  113. Yan OY, Andersson CR, Kondo T, Golden SS, Johnson CH, Ishiura M (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95:8660–8664

    Article  Google Scholar 

  114. Schmitz O, Katayama M, Williams SB, Kondo T, Golden SS (2000) CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science 289:765–768

    Article  PubMed  CAS  Google Scholar 

  115. Golden SS (2007) Integrating the circadian oscillator into the life of the cyanobacterial cell. Cold Spring Harb Symp Quant Biol 72:331–338

    Article  PubMed  CAS  Google Scholar 

  116. Kondo T, Tsinoremas NF, Golden SS, Johnson CH, Kutsuna S, Ishiura M (1994) Circadian clock mutants of cyanobacteria. Science 266:1233–1236

    Article  PubMed  CAS  Google Scholar 

  117. Liu Y, Tsinoremas NF, Johnson CH, Lebedeva NV, Golden SS, Ishiura M, Kondo T (1995) Circadian orchestration of gene expression in cyanobacteria. Genes Dev 9:1469–1478

    Article  PubMed  CAS  Google Scholar 

  118. Rust MJ, Markson JS, Lane WS, Fisher DS, O’Shea EK (2007) Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318:809–812

    Article  PubMed  CAS  Google Scholar 

  119. Tomita J, Nakajima M, Kondo T, Iwasaki H (2005) No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307:251–254

    Article  PubMed  CAS  Google Scholar 

  120. Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308:414–415

    Article  PubMed  CAS  Google Scholar 

  121. Merrow M, Mazzotta G, Chen Z, Roenneberg T (2006) The right place at the right time: regulation of daily timing by phosphorylation. Genes Dev 20:2629–2633

    Article  PubMed  CAS  Google Scholar 

  122. Johnson CH (2007) Bacterial circadian programs. Cold Spring Harb Symp Quant Biol 72:395–404

    Article  PubMed  CAS  Google Scholar 

  123. Grobbelaar N, Huang T-C, Lin HY, Chow TC (1986) Dinitrogen fixation endogenous rhythm in Synechococcus RF-1. FEMS Microbiol Lett 37:173–177

    Article  CAS  Google Scholar 

  124. Roenneberg T, Merrow M (2005) Circadian clocks – the fall and rise of physiology. Nat Rev Mol Cell Biol 6:965–971

    Article  PubMed  CAS  Google Scholar 

  125. Lee K, Loros JJ, Dunlap JC (2000) Interconnected feedback loops in the Neurospora circadian system. Science 289:107–110

    Article  PubMed  CAS  Google Scholar 

  126. Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW (1998) Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94:83–95

    Article  PubMed  CAS  Google Scholar 

  127. Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, Ralph MR, Menaker M, Takahashi JS (2000) Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288:483–491

    Article  PubMed  CAS  Google Scholar 

  128. Sugano S, Andronis C, Ong MS, Green RM, Tobin EM (1999) The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Proc Natl Acad Sci USA 96:12362–12366

    Article  PubMed  CAS  Google Scholar 

  129. Maier B, Wendt S, Vanselow JT, Wallach T, Reischl S, Oehmke S, Schlosser A, Kramer A (2009) A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. Genes Dev 23:708–718

    Article  PubMed  CAS  Google Scholar 

  130. Lin JM, Kilman VL, Keegan K, Paddock B, Emery-Le M, Rosbash M, Allada R (2002) A role for casein kinase 2alpha in the Drosophila circadian clock. Nature 420:816–820

    Article  PubMed  CAS  Google Scholar 

  131. Yin L, Wang J, Klein PS, Lazar MA (2006) Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science 311:1002–1005

    Article  PubMed  CAS  Google Scholar 

  132. Merrow M, Roenneberg T (2001) Circadian clocks: running on redox. Cell 106:141–143

    Article  PubMed  CAS  Google Scholar 

  133. Rutter J, Reick M, Wu LC, McKnight SL (2001) Regulation of clock and NPAS2 DNA binding by the Redox state of NAD cofactors. Science 293:510–514

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our work is supported by the Dutch Science Foundation (the NWO), the German Science Foundation (DFG), The Hersenen Stichting, EUCLOCK, a 6th Framework Program of the European Union and the Rosalind Franklin Fellowships of the University of Groningen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Merrow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Merrow, M., Lenssen, D., Roenneberg, T. (2010). Comparative Clocks. In: Albrecht, U. (eds) The Circadian Clock. Protein Reviews, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1262-6_7

Download citation

Publish with us

Policies and ethics