Skip to main content

Quadrupedal Locomotion of Saimiri boliviensis: A Comparison of Field and Laboratory-based Kinematic Data

  • Chapter
  • First Online:
Primate Locomotion

Abstract

As a result of a plethora of lab-based studies focusing on primate quadrupedalism, it is well known that compared to most other mammals, primates exhibit distinctive quadrupedal kinematics when moving on artificial “terrestrial” or “arboreal” substrates. However, we have little knowledge of how quadrupedal kinematics are impacted by the complexity of natural habitats, in which pathways may be obstructed, unstable, or vary dramatically in size, orientation, shape, or texture. In this study, we compared data on the quadrupedal kinematics of Saimiri boliviensis in both laboratory and field settings by comparing kinematic responses across laboratory substrates (pole, floor) and natural substrates (branches that varied in size and orientation). Field results indicate that Saimiri boliviensis adjusted to larger branches by increasing limb duty factors, but used a wide variety of gait types (as measured by limb phase) across all branch sizes and orientations, rather than fine tuning limb phase to these aspects of substrate. Lab poles elicited similar average limb phases and duty factors, but reduced gait flexibility compared to branches. Lab studies would benefit from greater complexity of simulated arboreal substrates, and field studies should strive to measure numerous substrate characteristics to most effectively test hypotheses about the adaptive nature of primate locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DS:

diagonal sequence

DSDC:

diagonal-sequence, diagonal-couplets

LS:

lateral sequence

LSDC:

lateral-sequence, diagonal-couplets

LSLC:

lateral-sequence, lateral-couplets

p :

probability level

r :

Pearson product-moment correlation

rho (ρ) :

Spearman rank-order correlation

References

  • Alexander RM, Maloiy GMO (1984) Stride lengths and stride frequencies of primates. J Zool Lond 202:577–582.

    Article  Google Scholar 

  • Arms A, Voges D, Fischer MS, Preuschoft H (2002) Arboreal locomotion in small new-world primates. Z Morphol Anthropol 83:243–263.

    PubMed  CAS  Google Scholar 

  • Arnold SJ (1983) Morphology, performance and fitness. Am Zool 23:347–361.

    Google Scholar 

  • Boinski S (1989) The positional behavior and substrate use of squirrel monkeys: ecological implications. J Hum Evol 18:659–677.

    Article  Google Scholar 

  • Boinski S, Sughrue K, Selvaggi L, Quatrone R, Henry M, Cropp S (2002) An expanded test of the ecological model of primate social evolution: competitive regimes and female bonding in three species of squirrel monkeys (Saimiri oerstedii, S. boliviensis, and S. sciureus). Behaviour 139:227–261.

    Article  Google Scholar 

  • Cartmill M (1972) Arboreal adaptations and the origin of the order Primates. In: Tuttle R (ed), The Functional and Evolutionary Biology of Primates. Chicago, Aldine 97–122.

    Google Scholar 

  • Cartmill M (1974) Pads and claws in arboreal locomotion. In: Jenkins FA (ed), Primate Locomotion. New York, Academic Press 45–83.

    Google Scholar 

  • Cartmill M, Lemelin P, Schmitt D (2002) Support polygons and symmetrical gaits in mammals. Zool J Linn Soc 136:401–420.

    Article  Google Scholar 

  • Cartmill M, Lemelin P, Schmitt D (2007a) Understanding the adaptive value of diagonal-sequence gaits in primates: a comment on Shapiro and Raichlen, 2005. Am J Phys Anthropol 133:822–825.

    Article  PubMed  Google Scholar 

  • Cartmill M, Lemelin P, Schmitt D (2007b) Primate gaits and primate origins. In: Ravosa MJ, Dagosto M (eds), Primate Origins: Adaptations and Evolution. New York, Springer 403–435.

    Google Scholar 

  • Conover WJ, Iman RI (1981) Rank transformations as a bridge between parametric and nonparametric statistics. Am Stat 35:124–133.

    Google Scholar 

  • Demes B, Larson SG, Stern JT Jr, Jungers WL, Biknivicius AR, Schmitt D (1994) The kinetics of primate quadrupedalism: “hindlimb drive” reconsidered. J Hum Evol 26:353–374.

    Article  Google Scholar 

  • Demes B, Jungers WL, Fleagle JG, Wunderlich RE, Richmond BG, Lemelin P (1996) Body size and leaping kinematics in Malagasy vertical clingers and leapers. J Hum Evol 31:367–388.

    Article  Google Scholar 

  • Demes B, Carlson KJ, Franz TM (2006) Cutting corners: the dynamics of turning behaviors in two primate species. J Exp Biol 209:927–937.

    Article  PubMed  Google Scholar 

  • Dunbar DC, Badam GL (2000) Locomotion and posture during terminal branch feeding. Int J Primatol 21:649–669.

    Article  Google Scholar 

  • Fleagle JG, Mittermeier RA (1980) Locomotor behavior, body size, and comparative ecology of seven Surinam monkeys. Am J Phys Anthropol 52:301–314.

    Article  Google Scholar 

  • Fontaine R (1990) Positional behavior in Saimiri boliviensis and Ateles geoffroyi. Am J Phys Anthropol 82:485–508.

    Article  PubMed  CAS  Google Scholar 

  • Franz TM, Demes B, Carlson KJ (2005) Gait mechanics of lemurid primates on terrestrial and arboreal substrates. J Hum Evol 48:199–217.

    Article  PubMed  Google Scholar 

  • Griffin TM, Main RP, Farley CT (2004) Biomechanics of quadrupedal walking: how do ­four-legged animals achieve inverted pendulum-like movements? J Exp Biol 207:3545–3558.

    Article  PubMed  Google Scholar 

  • Hedrick T (2007) “DLT Data Viewer 2”, Digitizing and DLT in MATLAB. http://www.unc.edu/∼thedrick/software1.html

    Google Scholar 

  • Higurashi Y, Hirasaki E, Kumakura H (2008) Gaits of Japanese macaques (Macaca fuscata) on a horizontal ladder and arboreal stability. Am J Phys Anthropol 138(4): 448–457.

    Google Scholar 

  • Hildebrand M (1966) Analysis of the symmetrical gaits of tetrapods. Folia Biotheoretica 1–22.

    Google Scholar 

  • Hildebrand M (1967) Symmetrical gaits of primates. Am J Phys Anthropol 26:119–130.

    Article  Google Scholar 

  • Hildebrand M (1976) Analysis of tetrapod gaits: general considerations and symmetrical gaits. In: Herman RM, Grillner S, Stein PSG et al (eds), Neural Control of Locomotion. New York, Plenum Press 203–236.

    Google Scholar 

  • Hurov JR (1982) Diagonal walking in captive infant vervet monkeys. Am J Primatol 2:211–213.

    Article  Google Scholar 

  • Johnson SE, Shapiro LJ (1998) Positional behavior and vertebral morphology in atelines and cebines. Am J Phys Anthropol 105:333–354.

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Okada M, Ishida H (1979) Kinesiological characteristics of primate walking: its significance in human walking. In: Morbeck ME, Preuschoft H and Gomberg N (eds), Environment, Behavior and Morphology: Dynamic Interactions in Primates. New York, G Fischer 297–311.

    Google Scholar 

  • Larson SG (1998) Unique aspects of quadrupedal locomotion in nonhuman primates. In: Strasser E, Fleagle J, Rosenberger A, McHenry H (eds), Primate Locomotion. New York, Plenum Press 157–173.

    Google Scholar 

  • Larson SG, Schmitt D, Lemelin P, Hamrick M (2000) Uniqueness of primate forelimb posture during quadrupedal locomotion. Am J Phys Anthropol 112:87–101.

    Article  PubMed  CAS  Google Scholar 

  • Larson SG, Schmitt D, Lemelin P, Hamrick M (2001) Limb excursion during quadrupedal walking: how do primates compare to other mammals? J Zool Lond 255:353–365.

    Article  Google Scholar 

  • Lemelin P, Schmitt D, Cartmill M (2003) Footfall patterns and interlimb coordination in opossums (Family Didelphidae): evidence for the evolution of diagonal sequence gaits in primates. J Zool Lond 260:423–429.

    Article  Google Scholar 

  • Li Y (2000) Arboreal primates and the origin of diagonal gait. Acta Anthropological Sinica (Suppl) 19:83–89.

    Google Scholar 

  • Mitchell CL (1990) The ecological basis for female social dominance: a behavioral study of the squirrel monkey (Saimiri sciureus) in the wild. PhD Dissertation, Princeton University, NJ.

    Google Scholar 

  • Nakano Y (1996) Footfall patterns in the early development of the quadrupedal walking of Japanese macaques. Folia Primatol 66:113–125.

    Article  PubMed  CAS  Google Scholar 

  • Nyakatura J, Fischer MS, Schmidt M (2008) Gait parameter adjustments of cotton-top tamarins (Saguinus oedipus, Callitrichidae) to locomotion on inclined arboreal substrates. Am J Phys Anthropol 135:13–26.

    Article  PubMed  Google Scholar 

  • Pridmore PA (1994) Locomotion in Dromiciops australis (Marsupialia: Microbiotheriidae). Austral J Zool 42:679–699.

    Article  Google Scholar 

  • Prost JH, Sussman RW (1969) Monkey locomotion on inclined surfaces. Am J Phys Anthropol 31:53–58.

    Article  Google Scholar 

  • Reynolds TR (1985) Mechanics of increased support of weight by the hindlimbs in primates. Am J Phys Anthropol 67:335–349.

    Article  PubMed  CAS  Google Scholar 

  • Rice WR (1988) Analyzing tables of statitical tests. Evolution 43:223–225.

    Article  Google Scholar 

  • Rollinson J, Martin RD (1981) Comparative aspects of primate locomotion, with special reference to arboreal cercopithecines. Symposia of the Zoological Society of London 48:377–427.

    Google Scholar 

  • Rothman J, Chapman C, Twinomugisha D, Wasserman MD, Lambert JE, Goldberg TL (2008) Measuring physical traits of primates remotely: the use of parallel lasers. Am J Primatol 70:1191–1195.

    Article  PubMed  Google Scholar 

  • Schmidt M (2005) Quadrupedal locomotion in squirrel monkeys (Cebidae: Saimiri sciureus): a cineradiographic study of limb kinematics and related substrate reaction forces. Am J Phys Anthropol 128:359–370.

    Article  PubMed  Google Scholar 

  • Schmitt D (1994) Forelimb mechanics as a function of substrate type during quadrupedalism in two anthropoid primates. J Hum Evol 26:441–457.

    Article  Google Scholar 

  • Schmitt D (1998) Forelimb mechanics during arboreal and terrestrial quadrupedalism in Old World monkeys. In: Strasser E, Fleagle J, Rosenberger A, McHenry H (eds), Primate Locomotion: Recent Advances. New York, Plenum Press 175–200.

    Google Scholar 

  • Schmitt D (1999) Compliant walking in primates. J Zool Lond 248:149–160.

    Article  Google Scholar 

  • Schmitt D (2003a) Evolutionary implications of the unusual walking mechanics of the common marmoset (C. jacchus). Am J Phys Anthropol 122:28–37.

    Article  PubMed  Google Scholar 

  • Schmitt D (2003b) Mediolateral reaction forces and forelimb anatomy in quadrupedal primates: implications for interpreting locomotor behavior in fossil primates. J Hum Evol 44:47–58.

    Article  PubMed  Google Scholar 

  • Schmitt D (2003c) Substrate size and primate forelimb mechanics: implications for understanding the evolution of primate locomotion. Int J Primatol 24:1023–1036.

    Article  Google Scholar 

  • Schmitt D, Lemelin P (2002) Origins of primate locomotion: gait mechanics of the woolly opossum. Am J Phys Anthropol 118:231–238.

    Article  PubMed  Google Scholar 

  • Schmitt D, Hanna JB (2004) Substrate alters forelimb to hindlimb peak force ratios in primates. J Hum Evol 46:239–254.

    Article  PubMed  Google Scholar 

  • Schmitt D, Cartmill M, Griffin TM, Hannah JB, Lemelin P (2006) Adaptive value of ambling gaits in primates and other mammals. J Exp Biol 209:2042–2049.

    Article  PubMed  Google Scholar 

  • Schultz AH (1963) Relations between the lengths of the main parts of the foot skeleton in primates. Folia Primatol 1:150–171.

    Article  Google Scholar 

  • Sellers W, Crompton R (2004) Automatic monitoring of primate locomotor behaviour using ­accelerometers. Folia Primatol 75:279–293.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro LJ, Raichlen DA (2005) Lateral sequence walking in infant Papio cynocephalus: implications for the evolution of diagonal sequence walking in primates. Am J Phys Anthropol 126:205–213.

    Article  PubMed  Google Scholar 

  • Shapiro LJ, Raichlen DA (2006) Limb proportions and the ontogeny of quadrupedal walking in infant baboons (Papio cynocephalus). J Zool 269:191–203.

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. New York, WH Freeman.

    Google Scholar 

  • Stevens NJ (2003) The influence of substrate size, orientation and compliance upon prosimian arboreal quadrupedalism. PhD Dissertation, Stony Brook University, New York.

    Google Scholar 

  • Stevens NJ (2006) Stability, limb coordination and substrate type: the ecorelevance of gait sequence pattern in primates. J Exp Zool 305A:953–963.

    Article  Google Scholar 

  • Stevens NJ (2007) The effect of branch diameter on primate gait sequence pattern. Am J Primatol 70:1–7.

    Google Scholar 

  • Terborgh J (1983) Five New World Primates: a Study in Comparative Ecology. Princeton, NJ, Princeton University Press.

    Google Scholar 

  • Vilensky JA, Patrick MC (1985) Gait characteristics of two squirrel monkeys, with emphasis on relationships with speed and neural control. Am J Phys Anthropol 68:429–444.

    Article  Google Scholar 

  • Vilensky JA, Larson SG (1989) Primate locomotion: utilization and control of symmetrical gaits. Annu Rev Anthrop 18:17–35.

    Article  Google Scholar 

  • Vilensky JA, Moore AM (1992) Utilization of lateral- and diagonal-sequence gaits at identical speeds by individual vervet monkeys. In: Matano S, Tuttle RH, Ishida H, Goodman M (eds), Topics in Primatology, Vol. 3: Evolutionary Biology, Reproductive Endocrinology and Virology. Tokyo, University of Tokyo Press 129–137.

    Google Scholar 

  • Vilensky JA, Moore AM, Libii JN (1994) Squirrel monkey locomotion on an inclined treadmill: implications for the evolution of gaits. J Hum Evol 26:375–386.

    Article  Google Scholar 

  • Wallace IJ, Demes B (2008) Symmetrical gaits of Cebus apella: implications for the functional significance of diagonal sequence gait in primates. J Hum Evol 54:783–794.

    Article  PubMed  Google Scholar 

  • White TD (1990) Gait selection in the brush-tail possum (Trichosurus vulpecula), the northern quoll (Dasyurus hallucatus), and the virginia opossum (Didelphis virginiana). J Mammal 71:79–84.

    Article  Google Scholar 

  • Youlatos D (1999) Comparative locomotion of six sympatric primates in Ecuador. Ann Sci Nat Zool Biol Anim 20:161–168.

    Google Scholar 

  • Young JW, Patel BA, Stevens NJ (2007) Body mass distribution and gait mechanics in fat-tailed dwarf lemurs (Cheirogaleus medius) and patas monkeys (Erythrocebus patas). J Hum Evol 53:26–40.

    Article  PubMed  Google Scholar 

  • Young JW (2008) Ontogeny of locomotion in Saimiri boliviensis and Callithrix jacchus: implications for primate locomotor ecology and evolution. PhD dissertation, Stony Brook University, New York.

    Google Scholar 

  • Young JW (2009) Substrate determines asymmetrical gait dynamics in marmosets (Callithrix jacchus) and squirrel monkeys (Saimiri boliviensis). Am J Phys Anthropol 138: 403–420.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liza J. Shapiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shapiro, L.J., Young, J.W., Souther, A. (2011). Quadrupedal Locomotion of Saimiri boliviensis: A Comparison of Field and Laboratory-based Kinematic Data. In: D'Août, K., Vereecke, E. (eds) Primate Locomotion. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1420-0_17

Download citation

Publish with us

Policies and ethics