Skip to main content

Symbolic Regression of Implicit Equations

  • Chapter
  • First Online:
Genetic Programming Theory and Practice VII

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

Abstract

Traditional Symbolic Regression applications are a form of supervised learning, where a label y is provided for every \(\vec{x}\) and an explicit symbolic relationship of the form \(y = f(\vec{x})\) is sought. This chapter explores the use of symbolic regression to perform unsupervised learning by searching for implicit relationships of the form \(f(\vec{x}, y) = 0\). Implicit relationships are more general and more expressive than explicit equations in that they can also represent closed surfaces, as well as continuous and discontinuous multi-dimensional manifolds. However, searching these types of equations is particularly challenging because an error metric is difficult to define. We studied several direct and indirect techniques, and present a successful method based on implicit derivatives. Our experiments identified implicit relationships found in a variety of datasets, such as equations of circles, elliptic curves, spheres, equations of motion, and energy manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bautu, Elena, Bautu, Andrei, and Luchian, Henri (2005). Symbolic regression on noisy data with genetic and gene expression programming. In Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’05), pages 321–324.

    Google Scholar 

  • Bongard, Josh and Lipson, Hod (2007). Automated reverse engineering of non-linear dynamical systems. Proceedings of the National Academy of Sciences, 104(24):9943–9948.

    Article  MATH  Google Scholar 

  • De Falco, Ivanoe, Cioppa, Antonio Della, and Tarantino, Ernesto (2002). Unsupervised spectral pattern recognition for multispectral images by means of a genetic programming approach. In Fogel, David B., El-Sharkawi, Mohamed A., Yao, Xin, Greenwood, Garry, Iba, Hitoshi, Marrow, Paul, and Shackleton, Mark, editors, Proceedings of the 2002 Congress on Evolutionary Computation CEC2002, pages 231–236. IEEE Press.

    Google Scholar 

  • Duffy, John and Engle-Warnick, Jim (1999). Using symbolic regression to infer strategies from experimental data. In Belsley, David A. and Baum, Christopher F., editors, Fifth International Conference: Computing in Economics and Finance, page 150, Boston College, MA, USA. Book of Abstracts.

    Google Scholar 

  • Hetland, Magnus Lie and Saetrom, Pal (2005). Evolutionary rule mining in time series databases. Machine Learning, 58(2–3):107–125.

    Article  MATH  Google Scholar 

  • Korns, Michael F. (2006). Large-scale, time-constrained symbolic regression. In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editors, Genetic Programming Theory and Practice IV, volume 5 of Genetic and Evolutionary Computation, chapter 16, pages –. Springer, Ann Arbor.

    Google Scholar 

  • Koza, John R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

    MATH  Google Scholar 

  • Mackin, Kenneth J. and Tazaki, Eiichiro (2000). Unsupervised training of Multiobjective Agent Communication using Genetic Programming. In Proceedings of the Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technology, volume 2, pages 738–741, Brighton, UK. IEEE.

    Google Scholar 

  • Mahfoud, Samir W. (1995). Niching methods for genetic algorithms. PhD thesis, Champaign, IL, USA.

    Google Scholar 

  • McConaghy, Trent, Palmers, Pieter, Gielen, Georges, and Steyaert, Michiel (2008). Automated extraction of expert domain knowledge from genetic programming synthesis results. In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editors, Genetic Programming Theory and Practice VI, Genetic and Evolutionary Computation, chapter 8, pages 111–125. Springer, Ann Arbor.

    Google Scholar 

  • Schmidt, Michael and Lipson, Hod (2007). Comparison of tree and graph encodings as function of problem complexity. In Thierens, Dirk, Beyer, Hans-Georg, Bongard, Josh, Branke, Jurgen, Clark, John Andrew, Cliff, Dave, Congdon, Clare Bates, Deb, Kalyanmoy, Doerr, Benjamin, Kovacs, Tim, Kumar, Sanjeev, Miller, Julian F., Moore, Jason, Neumann, Frank, Pelikan, Martin, Poli, Riccardo, Sastry, Kumara, Stanley, Kenneth Owen, Stutzle, Thomas, Watson, Richard A, and Wegener, Ingo, editors, GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolutionary computation, volume 2, pages 1674–1679, London. ACM Press.

    Google Scholar 

  • Schmidt, Michael and Lipson, Hod (2009). Distilling Free-Form Natural Laws from Experimental Data. Science, 324(5923):81–85.

    Article  Google Scholar 

  • Schmidt, Michael D. and Lipson, Hod (2006). Co-evolving fitness predictors for accelerating and reducing evaluations. In Riolo, Rick L., Soule, Terence, and Worzel, Bill, editors, Genetic Programming Theory and Practice IV, volume 5 of Genetic and Evolutionary Computation, chapter 17, pages –. Springer, Ann Arbor.

    Google Scholar 

  • Shpitalni, M. and Lipson, H. (1995). Classification of sketch strokes and corner detection using conic sections and adaptive clustering. ASME Journal of Mechanical Design, 119:131–135.

    Article  Google Scholar 

  • Smits, Guido and Kotanchek, Mark (2004). Pareto-front exploitation in symbolic regression. In O’Reilly, Una-May, Yu, Tina, Riolo, Rick L., and Worzel, Bill, editors, Genetic Programming Theory and Practice II, chapter 17, pages 283–299. Springer, Ann Arbor.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schmidt, M., Lipson, H. (2010). Symbolic Regression of Implicit Equations. In: Riolo, R., O'Reilly, UM., McConaghy, T. (eds) Genetic Programming Theory and Practice VII. Genetic and Evolutionary Computation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1626-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1626-6_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1653-2

  • Online ISBN: 978-1-4419-1626-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics