Skip to main content

Band-Limited Microresonator Reflectors and Mirror Structures

  • Chapter
  • First Online:
Photonic Microresonator Research and Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 156))

Abstract

An overview of microring resonator architectures, fabricated using both fiber and integrated technologies, whose function is to reflect nearly the entire incident signal within a specified band of frequencies, is presented. The signal components that lie outside this band, called the stopband, are either transmitted through the device to exit through another port, or dissipated. The stopband reflectivity is ideally close to unity, while outside the stopband the reflectivity is very small; the device performs the function of a band-limited optical mirror. A primary application for such a mirror is in semiconductor laser devices, where its frequency selective properties are exploited to eliminate unwanted resonances of an active medium with a broad gain characteristics. Another application involves the mirror group delay characteristics in reflection, which can, in some architectures, be shaped to compensate for the group delay distortion of an incident signal, or control the Q factor of an oscillator. Comparisons of the reflection coefficient provided by various architectures in terms of resonator loss and as a function of the coupling strength to the input waveguide are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mortimore, D.B. Fiber loop reflectors. J. Lightw. Technol. 6, 1217–1224 (1988)

    Article  Google Scholar 

  2. Urquhart, P. Fiber lasers with loop reflectors. Appl. Opt. 28, 3759–3767 (1989)

    Article  Google Scholar 

  3. Cusmai, G., Morichetti, F., et al. Circuit-oriented modeling of ring-resonators. Optical Quant. Electron. 37, 343–358 (2005)

    Article  Google Scholar 

  4. Brenner, E., Javid, M. Analysis of electric circuits (2nd ed.). McGraw-Hill, New York (1967), Section 15.11

    Google Scholar 

  5. Schwelb, O. Generalized analysis for a class of linear interferometric networks. Part I: Analysis. IEEE Trans. Microwave Theory Tech. 46, 1399–1408 (1998)

    Article  Google Scholar 

  6. Paschotta, R., Brinck, D.J.B., et al. Resonant loop mirror with narrow-band reflections and its application in single-frequency fiber lasers. Appl. Opt. 36, 593–596 (1997)

    Article  Google Scholar 

  7. Little, B.E., Chu, S.T, et al. Second-order filtering and sensing with partially coupled traveling waves in a single resonator. Opt. Lett. 23, 1570–1572 (1998)

    Article  Google Scholar 

  8. Haus, H.A. Waves and fields in optoelectronics. Prentice-Hall, Inc., Englewood Cliffs (1984), Section 3.4

    Google Scholar 

  9. Schwelb, O., Frigyes, I. All-optical tunable filters built with discontinuity-assisted ring resonators. J. Lightw. Technol. 19, 380–386 (2001)

    Article  Google Scholar 

  10. ÄŒtyrokĂ½, J., Richter, I., et al. Dual resonance in a waveguide-coupled ring microresonator. Opt. Quant. Elec. 38, 781–797 (2006)

    Article  Google Scholar 

  11. Collin, R.E. Foundations for microwave engineering (2nd ed.). McGraw-Hill, Inc., New York (1992), Section 4.8

    Google Scholar 

  12. Srivastava, S., Srinivasan, K. Coupled cavity analysis of the resonant loop mirror: closed form expressions and simulations for enhanced performance lasing. Appl. Opt. 44, 572–581 (2005)

    Article  Google Scholar 

  13. Srivastava, S., Gopal, R., et al. Feedback Mach-Zehnder resonator with reflector: analysis and applications in single frequency fiber lasers. Appl. Phys. Lett. 89, 141118 (2006)

    Article  Google Scholar 

  14. Schwelb, O. The nature of spurious mode suppression in extended FSR microring multiplexers. Opt. Commun. 271, 424–429 (2007)

    Article  Google Scholar 

  15. Sun, G., Moon, D.S., et al. High birefringence ring resonator with an inline reflector for single-frequency fiber lasers. Opt. Commun. 280, 157–160 (2007)

    Article  Google Scholar 

  16. Liu, B., Shakouri, A., et al. Passive microring-resonator-coupled lasers. Appl. Phys. Lett. 79, 3561–3563 (2001)

    Article  Google Scholar 

  17. Schwelb, O. Transmission, group delay and dispersion in single-ring optical resonators and add/drop filters – A tutorial overview. J. Lightw. Technol. 22, 1380–1394 (2004)

    Article  Google Scholar 

  18. Liu, B., Shakouri, A., et al. Wide tunable double ring resonator coupled lasers. IEEE Photon. Technol. Lett. 14, 600–602 (2002)

    Article  Google Scholar 

  19. Rabus, D.G., Bian, Z., et al. A GaInAsP-InP double-ring resonator coupled laser. IEEE Photon. Technol. Lett. 17, 1770–1772 (2005)

    Article  Google Scholar 

  20. VĂ¡zquez, C., Schwelb, O. Tunable, narrow-band, grating-assisted microring reflectors. Opt. Commun. 281, 4910–4916 (2008). Note two errors in Fig. 1: (1–hL) should be (1–h)L and in the Type III coupler the solid and dotted lines should be interchanged.

    Article  Google Scholar 

  21. Schwelb, O. On the nature of resonance splitting in coupled multiring optical resonators. Opt. Commun. 281, 1065–1071 (2008)

    Article  Google Scholar 

  22. Pruessner, M.W., et al. Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities. Opt. Exp. 15, 7557–7563 (2007)

    Article  Google Scholar 

  23. Tsarev, A.V., De Leonardis, F., et al. Thin heterogeneous SOI waveguides for thermo-optical tuning and filtering. Opt. Exp. 16, 3101–3113 (2008)

    Article  Google Scholar 

  24. Zhang, Z., et al. Resonance-splitting and enhanced notch depth in SOI ring resonators with mutual mode coupling. Opt. Exp. 16, 4621–4630 (2008)

    Article  Google Scholar 

  25. Boyd, R.W., Heebner, J.E. Sensitive disk resonator photonic biosensor. Appl. Opt. 40, 5742–5747 (2001)

    Article  Google Scholar 

  26. Zhang, J., Lit, J.W.Y. A symmetric figure-of-eight optical fiber resonator. Canadian J. Phys. 71, 20–24 (1993)

    Article  Google Scholar 

  27. Schwelb, O. Band-limited optical mirrors based on ring resonators: Analysis and design. J. Lightw. Technol. 23, 3931–3946 (2005)

    Article  Google Scholar 

  28. Poon, J.K.S., Scheuer, J., et al. Wavelength-selective reflector based on a circular array of coupled microring resonators. IEEE Photon. Technol. Lett. 16, 1331–1333 (2004)

    Article  Google Scholar 

  29. Chung, Y., Kim, D.-G., Dagli, N. Widely tunable coupled-ring reflector laser diode. IEEE Photon. Technol. Lett. 17, 1773–1775 (2005)

    Article  Google Scholar 

  30. Chremmos, I., Uzunoglu, N. Reflective properties of double-ring resonator system coupled to a waveguide. IEEE Photon. Technol. Lett. 17, 2110–2112 (2005)

    Article  Google Scholar 

  31. Chung, Y., Kim, D.-G., Dagli, N. Reflection properties of coupled ring reflectors. J. Lightw. Technol. 24, 1865–1874 (2006)

    Article  Google Scholar 

  32. Dagli, N., Chung, Y. Analytical analysis of coupled-ring reflectors based on symmetry arguments. Integrated Photonics Res. and Appl. April 24–28, 2006, Uncasville, CT, paper IWB7. Note that symmetry is not necessary for device operation

    Google Scholar 

  33. Schwelb, O. Some novel photonic bandpass and bandstop filters. 8th Int. Symp. Microwave Opt. Technol., Montréal, Canada, June 19–23 (2001), paper 105

    Google Scholar 

  34. Chremmos, I., Schwelb, O. Optimization, bandwidth and the effect of loss on the characteristics of the coupled ring reflector. Opt. Commun. vol. 282, 3712–3719 (2009)

    Google Scholar 

  35. Chremmos, I., Uzunoglu, N. Analysis of coupling between two slab waveguides in the presence of ring resonators. J. Opt. Soc. Am. A. 21, 267–279 (2004)

    Article  Google Scholar 

  36. Chremmos, I., Uzunoglu, N. Transmission and radiation in a slab waveguide coupled to a whispering-gallery resonator: Volume integral equation analysis. J. Opt. Soc. Am. A. 21, 839–846 (2004)

    Article  Google Scholar 

  37. Boscolo, S., Blow, K.J. Transfer characteristics and propagation effects of a multi-resonance ring resonator-based optical device. J. Modern Opt. 51, 559–573 (2004)

    Google Scholar 

  38. Paloczi, G.T., Scheuer, J., Yariv, A. Compact microring-based wavelength-selective inline optical reflector. IEEE Photon. Technol. Lett. 17, 390–392 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

Ioannis Chremmos acknowledges the support of the Alexander Onassis Public Benefit Foundation. Otto Schwelb acknowledges the support of the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Schwelb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

Schwelb, O., Chremmos, I. (2010). Band-Limited Microresonator Reflectors and Mirror Structures. In: Chremmos, I., Schwelb, O., Uzunoglu, N. (eds) Photonic Microresonator Research and Applications. Springer Series in Optical Sciences, vol 156. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1744-7_6

Download citation

Publish with us

Policies and ethics