Skip to main content

Turbo Equalization in Fiber-Optics Communication Systems

  • Chapter
  • First Online:
Coding for Optical Channels

Abstract

In order to adapt to the ever-increasing demands of telecommunication needs, the network operators already consider 100 Gb/s per dense wavelength division multiplexing (DWDM) channel transmission. At those data rates, the performance of fiber-optic communication systems is degraded significantly due to intra- and interchannel fiber nonlinearities, polarization mode dispersion (PMD), and chromatic dispersion [111]. In order to mitigate the signal distortions at ultra-high bit rates, some new technologies have been proposed and deployed in optical systems, and they represent a distinctive new trend in optical fiber communications. These new technologies include digital signal processing (DSP)-aided optical channel equalization, digital coherent receiving, multilevel modulations and optical polarization multiplexing (or optical multiple-input multiple-output technologies) [16]. To deal with chromatic dispersion and PMD a number of channel equalization techniques have been proposed recently including digital-filtering approach [1] and maximum likelihood sequence detection/estimation (MLSD/E) [2]. To simultaneously suppress chromatic dispersion and PMD, orthogonal frequency division multiplexing (OFDM) has been proposed [4, 5]. On the other hand, to deal with intrachannel nonlinearities someone may use either constrained coding [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A (w c, w r )-regular LDPC code is a linear block code whose H-matrix contains exactly w c 1’s in each column and exactly w r = w c n ∕ (nk) 1’s in each column, where w cnk.

  2. 2.

    The Q-factor is defined as Q = (μ1 − μ0) ∕ (σ1 + σ0), where μ j and σ j (j = 0, 1) represent the mean and the standard deviation corresponding to the bits j = 0, 1.

References

  1. Savory SJ (2008) Digital filters for coherent optical receivers. Opt Express 16:804–817

    Article  Google Scholar 

  2. Alic N, Papen GC, Saperstein RE, Jiang R, Marki C, Fainman Y, Radic S (2006) Experimental demonstration of 10 Gb/s NRZ extended dispersion-limited reach over 600 km-SMF link without optical dispersion compensation. In: Proceedings of the optical fiber communication conference, 2006 and the 2006 national fiber optic engineers conference, 5–10 March 2006, paper no. OWB7

    Google Scholar 

  3. Djordjevic IB, Minkov LL, Batshon HG (2008) Mitigation of linear and nonlinear impairments in high-speed optical networks by using LDPC-coded turbo equalization. IEEE J Sel Areas Comm 26(6):73–83

    Article  Google Scholar 

  4. Shieh W, Yi X, Ma Y, Tang Y (2007) Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems. Opt Express 15:9936–9947

    Article  Google Scholar 

  5. Djordjevic IB, Xu L, Wang T (2008) Simultaneous chromatic dispersion and PMD compensation by using coded-OFDM and girth-10 LDPC codes. Opt Express 16(14):10269–10278

    Article  Google Scholar 

  6. Djordjevic IB (2007) Suppression of intrachannel nonlinearities in high-speed WDM systems. In: Xu L (ed) Advanced technologies for high-speed optical communications. Research Signpost, Trivandrum–Kerala, India, pp 247–277

    Google Scholar 

  7. Djordjevic IB, Vasic B (2006) Nonlinear BCJR equalizer for suppression of intrachannel nonlinearities in 40 Gb/s optical communication systems. Opt Express 14:4625–4635

    Article  Google Scholar 

  8. Djordjevic IB, Batshon HG, Cvijetic M, Xu L, Wang T (2007) PMD compensation by LDPC-coded turbo equalization. IEEE Photon Technol Lett 19(15):1163–1165

    Article  Google Scholar 

  9. Minkov LL, Djordjevic IB, Batshon HG, Xu L, Wang T, Cvijetic M, Kueppers F (2007) Demonstration of PMD compensation by LDPC-coded turbo equalization and channel capacity loss characterization due to PMD and quantization. IEEE Photon Technol Lett 19(22): 1852–1854

    Article  Google Scholar 

  10. Minkov LL, Djordjevic IB, Xu L, Wang T, Kueppers F (2008) Evaluation of large girth LDPC codes for PMD compensation by turbo equalization. Opt Express 16(17):13450–13455

    Article  Google Scholar 

  11. Djordjevic IB, Vasic B (2006) Noise-predictive BCJR equalization for suppression of intrachannel nonlinearities. IEEE Photon Technol Lett 18(12):1317–1319

    Article  Google Scholar 

  12. Haykin S (2001) Communication systems. Wiley, Hoboken, NJ

    Google Scholar 

  13. Proakis JG (2001) Digital communications. McGrawHill, Boston

    Google Scholar 

  14. Haykin S (1988) Digital communications. Wiley, Hoboken, NJ

    Google Scholar 

  15. Goldsmith A (2005) Wireless communications. Cambridge University Press, New York

    Google Scholar 

  16. Poggiolini P, Bosco G, Savory S, Benlachtar Y, Killey RI, Prat J (2006) 1,040 km uncompensated IMDD transmission over G.652 fiber at 10 Gbit/s using a reduced-state SQRT-metric MLSE receiver. In: Proceedings of the ECOC 2006, post-deadline paper Th4.4.6, Cannes, France, September 2006

    Google Scholar 

  17. Bülow H, Buchali F, Franz B (2005) Enhancement of tolerances in transmission systems by analog and digital signal processing. Asia-Pacific optical communications conference (APOC 2005) Shanghai, China, November 2005. In: Proceedings of the SPIE, vol 6021, paper 6021–6163

    Google Scholar 

  18. Bülow H, Lanne S ( 2005) PMD compensation techniques. In: Galtarossa A Menyuk CR (eds) Polarization mode dispersion. Springer, New York

    Google Scholar 

  19. Agazzi OE, Hueda MR, Carrer HS, Crivelli DE (2005) Maximum-likelihood sequence estimation in dispersive optical channels. IEEE/OSA J Lightwave Technol 23:749–763

    Article  Google Scholar 

  20. Alic N, Papen GC, Saperstein RE, Milstein LB, Fainman Y (2005) Signal statistics and maximum likelihood sequence estimation in intensity modulated fiber optic links containing a single optical preamplifier. Opt Express 13:4568–4579

    Article  Google Scholar 

  21. Colavolpe G, Foggi T, Forestieri E, Prati G (2008) Multilevel optical systems with MLSD receivers insensitive to GVD and PMD. IEEE/OSA J Lightwave Technol 26:1263–1273

    Article  Google Scholar 

  22. Ivkovic M, Djordjevic IB, Vasic B (2006) Hard decision error correcting scheme based on LDPC codes for long-haul optical transmission. In: Proceedings of the optical transmission systems and equipment for networking V-SPIE optics east conference, Boston, Massachusetts, 1–4 October 2006 vol 6388, pp 63880F.1–63880F.7

    Google Scholar 

  23. Hagenauer J, Hoeher P (1989) A Viterbi algorithm with soft-decision outputs and its applications. In: Proceedings of the IEEE Globecom conference, Dallas, TX, November 1989, pp 1680–1686

    Google Scholar 

  24. Bahl LR, Cocke J, Jelinek F, Raviv J (1974) Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans Inf Theory IT-20:284–287

    Article  MathSciNet  Google Scholar 

  25. Wymeersch H Win MZ (2008) Soft electrical equalization for optical channels. In: Proceedings of the ICC’08, 19–23 May 2008, pp 548–552

    Google Scholar 

  26. Douillard C, Jézéquel M, Berrou C, Picart A, Didier P, Glavieux A (1995) Iterative correction of intersymbol interference: turbo equalization. Eur Trans Telecommun 6:507–511

    Article  Google Scholar 

  27. Tüchler M, Koetter R, Singer AC (2002) Turbo equalization: principles and new results. IEEE Trans Commun 50(5):754–767

    Article  Google Scholar 

  28. Jäger M, Rankl T, Spiedel J, Bulöw H, Buchali F (2006) Performance of turbo equalizers for optical PMD channels. IEEE/OSA J Lightwave Technol 24(3):1226–1236

    Article  Google Scholar 

  29. Xia C, Rosenkranz W (2005) Performance enhancement for duobinary modulation through nonlinear electrical equalization. In: Proceedings of the 31st european conference on optical communications (ECOC 2005) vol. 2, Kiel University, Germany, 25–29 September 2005, pp 255–256

    Google Scholar 

  30. Ivkovic M, Djordjevic I, Rajkovic P, Vasic B (2007) Pulse energy probability density functions for long-haul optical fiber transmission systems by using instantons and Edgeworth expansion. IEEE Photon Technol Lett 19(20):1604–1606

    Article  Google Scholar 

  31. Fossorier MPC (2004) Quasi-cyclic low-density parity-check codes from circulant permutation matricies. IEEE Trans Inf Theory 50:1788–1794

    Article  MathSciNet  Google Scholar 

  32. ten Brink S (2001) Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Trans Commun 40:1727–1737

    Article  Google Scholar 

  33. Essiambre R-J, Foschini GJ, Kramer G, Winzer PJ (2008) Capacity limits of information transport in fiber-optic networks. Phys Rev Lett 101:163901-1–163901-4

    Article  Google Scholar 

  34. Ip E, Kahn JM (2008) Compensation of dispersion and nonlinear effects using digital backpropagation. J Lightwave Technol 26(20):3416–3425, October 15, 2008

    Article  Google Scholar 

  35. Xiao-Yu H, Eleftheriou E, Arnold D-M, Dholakia A (2001) Efficient implementations of the sum-product algorithm for decoding of LDPC codes. In: Proceedings of the IEEE Globecom, vol 2, November 2001, pp 1036–1036E

    Google Scholar 

  36. Djordjevic IB, Arabaci M, Minkov L (2009) Next generation FEC for high-capacity communication in optical transport networks. IEEE/OSA J Lightwave Technol 27(16):3518–3530

    Article  Google Scholar 

  37. Minkov LL, Djordjevic IB, Xu L, Wang T (2009) PMD compensation in polarization multiplexed multilevel modulations by turbo equalization. IEEE Photon Technol Lett 21(23): 1773–1775

    Article  Google Scholar 

  38. Djordjevic IB, Minkov LL, Xu L, Wang T (2009) Suppression of fiber nonlinearities and PMD in coded-modulation schemes with coherent detection by using turbo equalization IEEE/OSA J Opt Commun Netw 1(6):555–564

    Google Scholar 

  39. Tanner RM (1981) A recursive approach to low complexity codes. IEEE Trans Inf Theory IT-27(5):533–547, September 1981

    Article  MathSciNet  Google Scholar 

  40. Milenkovic O, Djordjevic IB, Vasic B (2004) Block-circulant low-density parity-check codes for optical communication systems. IEEE J Sel Top Quantum Electron 10(2):294–299, March/April 2004

    Article  Google Scholar 

  41. Djordjevic IB, Xu L, Wang T, Cvijetic M (2008) Large girth low-density parity-check codes for long-haul high-speed optical communications, in Proc OFC/NFOEC, (IEEE/OSA, San Diego, CA, 2008), Paper no. JWA53

    Google Scholar 

  42. Colavolpe G, Ferrari G, Raheli R (2001) Reduced-sate BCJR-type algorithms. IEEE Sel Areas Comm 19:848–858, May 2001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Djordjevic .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Djordjevic, I., Ryan, W., Vasic, B. (2010). Turbo Equalization in Fiber-Optics Communication Systems. In: Coding for Optical Channels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5569-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5569-2_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5568-5

  • Online ISBN: 978-1-4419-5569-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics