Skip to main content

Nephrogenic Systemic Fibrosis

  • Chapter
  • First Online:
Scleroderma

Abstract

The earliest observations of the novel disorder, nephrogenic systemic fibrosis, were made in a renal transplantation unit of a medical center in Southern California in 1997 in patients with chronic renal disease undergoing renal dialysis. Many of these patients were recipients of kidney transplants, most of which had failed. The most apparent clinical manifestations were extensive and progressive cutaneous induration. Histopathological examination of skin biopsy specimens indicated that the disorder was distinct from scleroderma or morphea and resembled more closely scleromyxedema [1]. A detailed description of the first 15 cases was published in 2000 [2]. Nine of the fifteen patients had undergone a renal transplant and all had pre-existing chronic renal disease except for a single patient who had received dialysis for acute tubular necrosis. The manifestations consisted of extensive thickening, hardening and hyperpigmentation of the skin. Distinct papules and subcutaneous nodules were present in some of these patients as well as flexion contractures of the joints of the arms. These changes were observed predominantly on the lower extremities. Each patient initially received a dermatological diagnosis of fasciitis and myositis, scleroderma or calciphylaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Leboit PE. What nephrogenic fibrosing dermopathy might be. Arch Dermatol. 2003;139:928–30.

    Article  PubMed  Google Scholar 

  2. Cowper SE, Robin HS, Steinberg SM, et al. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet. 2000;356:1000–1.

    Article  PubMed  CAS  Google Scholar 

  3. Cowper SE, Su LD, Bhawan J, et al. Nephrogenic fibrosing dermopathy. Am J Dermatopathol. 2001;23:383–93.

    Article  PubMed  CAS  Google Scholar 

  4. Cowper SE. Nephrogenic Fibrosing Dermopathy (ICNSFR Website). 2001-2009. Available at http://www.pathmax.com/dermweb/. Accessed 27 Oct 2010.

  5. Mackay-Wiggan JM, Cohen DJ, Hardy MA, et al. Nephrogenic fibrosing dermopathy (scleromyxedema-like illness of renal disease. J Am Acad Dermatol. 2003;48:55–60.

    Article  PubMed  Google Scholar 

  6. Swartz RD, Crofford LJ, Phan SH, et al. Nephrogenic fibrosing dermopathy: a novel cutaneous fibrosing disorder in patients with renal failure. Am J Med. 2003;114:563–72.

    Article  PubMed  Google Scholar 

  7. Streams BN, Liu V, Liégeois N, Moschella SM. Clinical and pathologic features of nephrogenic fibrosing dermopathy: a report of two cases. J Am Acad Dermatol. 2003;48:42–7.

    Article  PubMed  Google Scholar 

  8. Perazella MA, Ishibe S, Perazella MA, Reilly RF. Nephrogenic fibrosing dermopathy: an unusual skin condition associated with kidney disease. Semin Dial. 2003;16:276–80.

    Article  PubMed  Google Scholar 

  9. Ting WW, Stone MS, Madison KC, et al. Nephrogenic fibrosing dermopathy with systemic involvement. Arch Dermatol. 2003;139:903–6.

    Article  PubMed  Google Scholar 

  10. Jimenez SA, Artlett CM, Sandorfi N, et al. Dialysis-associated systemic fibrosis (Nephrogenic Fibrosing Dermopathy). Arthritis Rheum. 2004;50:2660–6.

    Article  PubMed  CAS  Google Scholar 

  11. Levine JM, Taylor RA, Elman LB, et al. Involvement of skeletal muscle in dialysis-associated fibrosis (Nephrogenic Fibrosing Dermopathy). Muscle Nerve. 2004;30:569–77.

    Article  PubMed  Google Scholar 

  12. Mendoza FA, Artlett CM, Sandori N, et al. Description of twelve cases of nephrogenic fibrosing dermopathy and review of the literature. Semin Arthritis Rheum. 2006;35:238–49.

    Article  PubMed  Google Scholar 

  13. Saenz A, Mandal R, Kradin R, et al. Nephrogenic fibrosing dermopathy with involvement of the dura mater. Virchows Arch. 2006;449:389–91.

    Article  PubMed  Google Scholar 

  14. Kay J, Bazari H, Avery LL, et al. Case records of the Massachusetts General Hospital case 6-2008: a 46-year-old woman with renal failure and stiffness of the joints and skin. N Engl J Med. 2008;358:827–38.

    Article  PubMed  CAS  Google Scholar 

  15. Swaminathan S, High WA, Ranville J, et al. Cardiac and vascular metal deposition with high mortality in nephrogenic systemic fibrosis. Kidney Int. 2008;73:1413–8.

    Article  PubMed  CAS  Google Scholar 

  16. Krous HF, Breisch E, Chadwick AE, et al. Nephrogenic systemic fibrosis with multiorgan involvement in a teenage male after lymphoma, Ewing’s sarcoma, end-stage renal disease, and hemodialysis. Pediatr Dev Pathol. 2007;10:395–402.

    Article  PubMed  Google Scholar 

  17. Kucher C, Steere J, Elenitsas R, et al. Nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis with diaphragmatic involvement in a patient with respiratory failure. J Am Acad Dermatol. 2006;54(suppl):S31–4.

    Article  PubMed  Google Scholar 

  18. Gibson SE, Farver CV, Prayson RA. Multiorgan involvement in nephrogenic fibrosing dermopathy: an autopsy case and review of the literature. Arch Pathol Lab Med. 2006;130:209–12.

    PubMed  Google Scholar 

  19. Panda S, Bandyopadhyay D, Tarafder A. Nephrogenic fibrosing dermopathy: a series in a non-western population. J Am Acad Dermatol. 2006;54:155–9.

    Article  PubMed  Google Scholar 

  20. Koreishi AF, Nazarian RM, Saenz AJ, et al. Nephrogenic systemic fibrosis: a pathologic study of autopsy cases. Arch Pathol Lab Med. 2009;133:1943–8.

    PubMed  Google Scholar 

  21. Grobner T. Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21:1745.

    Article  CAS  Google Scholar 

  22. Marckmann P, Skov L, Rossen K, et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. 2006;17:2359–62.

    Article  PubMed  Google Scholar 

  23. Morcos SK. Nephrogenic systemic fibrosis following the administratin of extracellular gadolinium based contrast agents: is the stability of the contrast agent molecule an important factor in the pathogenesis of this condition? Br J Radiol. 2007;80:73–6.

    Article  PubMed  CAS  Google Scholar 

  24. Sadowski EA, Bennett LK, Chan MR, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243:148–57.

    Article  PubMed  Google Scholar 

  25. Collidge TA, Thomson PC, Mark PB, et al. Gadolinium-enhanced MR imaging and nephrogenic systemic fibrosis: retrospective study of a renal replacement therapy cohort. Radiology. 2007;245:168–75.

    Article  PubMed  Google Scholar 

  26. Prince MR, Zhang H, Morris M, et al. Incidence of nephrogenic systemic fibrosis at two large medical centers. Radiology. 2008;248:807–16.

    Article  PubMed  Google Scholar 

  27. Broome DR. Nephrogenic systemic fibrosis associated with gadolinium based contrast agents: a summary of the medical literature reporting. Eur J Radiol. 2008;66:230–4.

    Article  PubMed  Google Scholar 

  28. Prince MR, Zhang HL, Roditi GH, et al. Risk factors for NSF: a literature review. J Magn Reson Imaging. 2009;30:1298–308.

    Article  PubMed  Google Scholar 

  29. Shabana WM, Cohan RH, Ellis JH, et al. Nephrogenic systemic fibrosis: a report of 29 cases. AJR Am J Roentgenol. 2008;190:736–41.

    Article  PubMed  Google Scholar 

  30. Rydahl C, Thomsen HS, Marckmann P. High prevalence of nephrogenic systemic fibrosis in chronic renal failure patients exposed to gadodiamide, a gadolinium-containing magnetic resonance contrast agent. Invest Radiol. 2008;43:141–4.

    Article  PubMed  CAS  Google Scholar 

  31. U.S. Food and Drug Administration. Public health advisory: Gadolinium-containing contrast agents for magnetic resonance imaging (MRI): Omniscan, OptiMark, Magnevist, ProHance, and MultiHance. June 8, 2006. Available at: http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/DrugSafetyInformationforHeathcareProfessionals/PublicHealthAdvisories/ucm053112.htm. Accessed 27 Oct 2010.

  32. U.S. Food and Drug Administration. Information for healthcare professionals. Gadolinium-based contrast agents for magnetic resonance imaging marketed as Magnevist, MultiHance, Omniscan, OptiMark, ProHance). May 23, 2007. Available at: http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm142905.htm. Accessed 27 Oct 2010.

  33. U.S. Food and Drug Administration. FDA Drug Safety Communication: New warnings for using gadolinium-based contrast agents in patients with kidney dysfunction. Available at: http://www.fda.gov/Drugs/DrugSafety/ucm223966.htm. Accessed 27 Oct 2010.

  34. Piera-Valázquez S, Sandorfi N, Jiménez SA. Nephrogenic systemic fibrosis/nephrogenic fibrosing dermopathy: clinical aspects. Skinmed. 2007;6:24–7.

    Article  Google Scholar 

  35. Cowper SE, Bucala R. Nephrogenic fibrosing dermopathy: suspect identified, motive unclear. Am J Dermatopathol. 2003;25:358.

    Article  PubMed  Google Scholar 

  36. Bucala R, Spiegel LA, Chesney J, et al. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994;1:71–81.

    PubMed  CAS  Google Scholar 

  37. Quan TE, Cowper S, Wu SP, et al. Circulating fibrocytes:collagen-secreting cells of the peripheral blood. J Immunol. 2004;36:598–606.

    CAS  Google Scholar 

  38. Leung N, Shaikh A, Cosio FG, et al. The outcome of patients with nephrogenic systemic fibrosis after successful kidney transplantation. Am J Transplant. 2010;10:558–62.

    Article  PubMed  CAS  Google Scholar 

  39. Panesar M, Banerjee S, Barone GW. Clinical improvement of nephrogenic systemic fibrosis after kidney transplantation. Clin Transplant. 2008;22:803–8.

    Article  PubMed  Google Scholar 

  40. Aires SB, Sotto MN, Nico MM. Nephrogenic fibrosing dermopathy: report of two cases. Acta Derm Venereol. 2007;87:521–4.

    Article  PubMed  Google Scholar 

  41. Kay J, High WA. Imatinib mesylate treatment of nephrogenic systemic fibrosis. Arthritis Rheum. 2008;58:2543–8.

    Article  PubMed  CAS  Google Scholar 

  42. Chandran S, Petersen J, Jacobs C, et al. Imatinib in the treatment of nephrogenic systemic fibrosis. Am J Kidney Dis. 2009;53:129–32.

    Article  PubMed  Google Scholar 

  43. Tran KT, Prather HB, Cockerell CJ, et al. UV-A1 therapy for nephrogenic systemic fibrosis. Arch Dermatol. 2009;145:1170–4.

    Article  PubMed  Google Scholar 

  44. Kreuter A, Gambichler T, Weiner SM, et al. Limited effects of UV-A1 phototherapy in 3 patients with nephrogenic systemic fibrosis. Arch Dermatol. 2008;144:1527–9.

    Article  PubMed  Google Scholar 

  45. Duffy KL, Green L, Harris R, et al. Treatment of nephrogenic systemic fibrosis with Re-PUVA. J Am Acad Dermatol. 2008;59(2 Suppl 1):S39–40.

    Article  PubMed  Google Scholar 

  46. Wahba IM, White K, Meyer M, et al. The case for ultraviolet light therapy in nephrogenic fibrosing dermopathy–report of two cases and review of the literature. Nephrol Dial Transplant. 2007;22:631–6.

    Article  PubMed  Google Scholar 

  47. Kafi R, Fisher GJ, Quan T, et al. UV-A1 phototherapy improves nephrogenic fibrosing dermopathy. Arch Dermatol. 2004;140:1322–4.

    Article  PubMed  Google Scholar 

  48. Mathur K, Morris S, Deighan C, et al. Extracorporeal photopheresis improves nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis: three case reports and review of literature. J Clin Apher. 2008;23:144–50.

    Article  PubMed  Google Scholar 

  49. Kintossou R, D’Incan M, Chauveau D, et al. Nephrogenic fibrosing dermopathy treated with extracorporeal photopheresis: role of gadolinium? Ann Dermatol Venereol. 2007;134:667–71.

    Article  PubMed  CAS  Google Scholar 

  50. Läuchli S, Zortea-Caflisch C, Nestle FO, et al. Nephrogenic fibrosing dermopathy treated with extracorporeal photopheresis. Dermatology. 2004;208:278–80.

    Article  PubMed  Google Scholar 

  51. Gilliet M, Cozzio A, Burg G, et al. Successful treatment of three cases of nephrogenic fibrosing dermopathy with extracorporeal photopheresis. Br J Dermatol. 2005;152:531–6.

    Article  PubMed  CAS  Google Scholar 

  52. Marckmann P, Nielsen AH, Sloth JJ. Possibly enhanced Gd excretion in dialysate, but no major clinical benefit of 3-5 months of treatment with sodium thiosulfate in late stages of nephrogenic systemic fibrosis. Nephrol Dial Transplant. 2008;23:3280–2.

    Article  PubMed  CAS  Google Scholar 

  53. Kadiyala D, Roer DA, Perazella MA. Nephrogenic systemic fibrosis associated with gadoversetamide exposure: treatment with sodium thiosulfate. Am J Kidney Dis. 2009;53:133–7.

    Article  PubMed  Google Scholar 

  54. Yerram P, Saab G, Karuparthi PR, et al. Nephrogenic systemic fibrosis: a mysterious disease in patients with renal failure–role of gadolinium-based contrast media in causation and the beneficial effect of intravenous sodium thiosulfate. Clin J Am Soc Nephrol. 2007;2:258–63.

    Article  PubMed  CAS  Google Scholar 

  55. Pieringer H, Schmekal B, Janko O, et al. Treatment with corticosteroids does not seem to benefit nephrogenic systemic fibrosis. Nephrol Dial Transplant. 2007;22:3094.

    Article  PubMed  Google Scholar 

  56. Altun E, Martin DR, Wertman R, et al. Nephrogenic systemic fibrosis: change in incidence following a switch in gadolinium agents and adoption of a gadolinium policy-report from two U.S. universities. Radiology. 2009;253:689–96.

    Article  PubMed  Google Scholar 

  57. Parsons AC, Yosipovitch G, Sheehan DJ, et al. Transglutaminases: the missing link in nephrogenic systemic fibrosis. Am J Dermatopathol. 2007;29:433–6.

    Article  PubMed  Google Scholar 

  58. Wilford C, Fine JD, Boyd AS, et al. Nephrogenic systemic fibrosis: report of an additional case with granulomatous inflammation. Am J Dermatopathol. 2010;32:71–5.

    Article  PubMed  Google Scholar 

  59. Neudecker BA, Stern R, Mark L, et al. Scleromyxedema-like lesions of patients in renal failure contain hyaluronan: a possible pathophysiological mechanism. J Cutan Pathol. 2005;9:612–5.

    Article  Google Scholar 

  60. Edward M, Fitzgerald L, Thind C, et al. Cutaneous mucinosis associated with dermatomyositis and nephrogenic fibrosing dermopathy: fibroblast hyaluronan synthesis and the effect of patient serum. Br J Dermatol. 2007;156:473–9.

    Article  PubMed  CAS  Google Scholar 

  61. Del Galdo F, Shaw MA, Jimenez SA. Proteomic analysis identification of a pattern of shared alterations in the secretome of dermal fibroblasts from systemic sclerosis and nephrogenic systemic fibrosis. Am J Pathol. 2010;177:1638–46.

    Article  PubMed  CAS  Google Scholar 

  62. Honore B, Vorum H. The CREC family, a novel family of multiple EF-hand, low-affinity Ca2  +  -binding proteins localised to the secretory pathway of mammalian cells. FEBS Lett. 2000;466:11–8.

    Article  PubMed  CAS  Google Scholar 

  63. Vorum H, Hager H, Christensen BM, et al. Human calumenin localizes to the secretory pathway and is secreted to the medium. Exp Cell Res. 1999;248:473–81.

    Article  PubMed  CAS  Google Scholar 

  64. Fukuda T, Oyamada H, Isshiki T, et al. Distribution and variable expression of secretory pathway protein reticulocalbin in normal human organs and non-neoplastic pathological conditions. J Histochem Cytochem. 2007;55:335–45.

    Article  PubMed  CAS  Google Scholar 

  65. Bassuk JA, Berg RA. Protein disulphide isomerase, a multifunctional endoplasmic reticulum protein. Matrix. 1989;9:244–58.

    PubMed  CAS  Google Scholar 

  66. Kellokumpu S, Suokas M, Risteli L, Myllyla R. Protein disulfide isomerase and newly synthesized procollagen chains form higher-order structures in the lumen of the endoplasmic reticulum. J Biol Chem. 1997;272:2770–7.

    Article  PubMed  CAS  Google Scholar 

  67. Wilson R, Lees JF, Bulleid NJ. Protein disulfide isomerase acts as a molecular chaperone during the assembly of procollagen. J Biol Chem. 1998;273:9637–43.

    Article  PubMed  CAS  Google Scholar 

  68. Ko MK, Key EP. PDI-mediated ER retention and proteasomal degradation of procollagen I in corneal endothelial cells. Exp Cell Res. 2004;295:25–35.

    Article  PubMed  CAS  Google Scholar 

  69. Piera-Velazquez S, Louneva N, Fertala J, et al. Persistent activation of dermal fibroblasts from patients with gadolinium-associated nephrogenic systemic fibrosis. Ann Rheum Dis. 2010;69:2017–23.

    Article  PubMed  CAS  Google Scholar 

  70. Chesney J, Bacher M, Bender A, Bucala R. The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naive T-cells. Proc Natl Acad Sci USA. 1997;94:6307–12.

    Article  PubMed  CAS  Google Scholar 

  71. Chesney J, Metz C, Stavitsky AB, et al. Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes. J Immunol. 1998;160:419–25.

    PubMed  CAS  Google Scholar 

  72. Schieren G, Gambichler T, Skrygan M, et al. Balance of profibrotic and antifibrotic signaling in nephrogenic systemic fibrosis skin lesions. Am J Kidney Dis. 2010;55:1040–9.

    Article  PubMed  CAS  Google Scholar 

  73. High WA, Ayers J, Chandler J, et al. Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol. 2007;56:21–6.

    Article  PubMed  Google Scholar 

  74. Thakral C, Abraham JL. Automated scanning electron microscopy and x-ray microanalysis for in situ quantification of gadolinium deposits in skin. J Electron Microsc. 2007;56:181–7.

    Article  Google Scholar 

  75. Thakral C, Alhariri J, Abraham JL. Long-term retention of gadolinium in tissues from nephrogenic systemic fibrosis patient after multiple gadolinium-enhanced MRI scans: case report and implications. Contrast Media Mol Imaging. 2007;2:199–205.

    Article  PubMed  CAS  Google Scholar 

  76. Abraham JL, Thakral C, Skov L, et al. Dermal inorganic gadolinium concentrations: evidence for in vivo transmetallation and long-term persistence in nephrogenic systemic fibrosis. Br J Dermatol. 2008;158:272–80.

    Google Scholar 

  77. Thakral C, Abraham JL. Gadolinium-induced nephrogenic systemic fibrosis is associated with insoluble Gd deposits in tissues: in vivo transmetallation confirmed by microanalysis. J Cutan Pathol. 2009;36:1244–54.

    Article  PubMed  Google Scholar 

  78. Khurana A, Greene Jr JR, High WA. Quantification of gadolinium in nephrogenic systemic fibrosis: re-examination of a reported cohort with an analysis of clinical factors. J Am Acad Dermatol. 2008;59:218–24.

    Article  PubMed  Google Scholar 

  79. High WA, Ayers RA, Cowper SE. Gadolinium is quantifiable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol. 2007;56:710–2.

    Article  PubMed  Google Scholar 

  80. George SJ, Webb SM, Abraham JL, et al. Synchrotron X-ray analyses demonstrate phosphate-bound gadolinium in nephrogenic systemic fibrosis. Br J Dermatol. 2010;163(5):1077–81.

    Article  PubMed  CAS  Google Scholar 

  81. Christensen KN, Lee CU, Hanley MM, et al. Quantification of gadolinium in fresh skin and serum samples from patients with nephrogenic systemic fibrosis. J Am Acad Dermatol. 2011;64(1):91–6.

    Article  PubMed  CAS  Google Scholar 

  82. High WA, Ranville JF, Brown M, et al. Gadolinium deposition in nephrogenic systemic fibrosis: an examination of tissue using synchrotron x-ray fluorescence spectroscopy. J Am Acad Dermatol. 2010;62:38–44.

    Article  PubMed  CAS  Google Scholar 

  83. Abu-Alfa A. The impact of NSF on the care of patients with kidney disease. J Am Coll Radiol. 2008;5:45–52.

    Article  PubMed  Google Scholar 

  84. Bellin MF, Vasile M, Morel-Precetti S. Currently used nonspecific extracellular MR contrast media. Eur Radiol. 2003;13:2688–98.

    Article  PubMed  CAS  Google Scholar 

  85. Le Mignon MM, Chambon C, Warrington S, et al. Gd-DOTA. Pharmacokinetics and tolerability after intravenous injection into healthy volunteers. Invest Radiol. 1990;25:933–7.

    Article  PubMed  Google Scholar 

  86. Staks T, Schuhmann-Giampieri G, Frenzel T, et al. Pharmacokinetics, dose proportionality, and tolerability of gadobutrol after single intravenous injection in healthy volunteers. Invest Radiol. 1994;29:709–15.

    Article  PubMed  CAS  Google Scholar 

  87. Tombach B, Bremer C, Reimer P, et al. Pharmacokinetics of 1M gadobutrol in patients with chronic renal failure. Invest Radiol. 2000;35:35–40.

    Article  PubMed  CAS  Google Scholar 

  88. Townsend RR, Cohen DL, Katholy R, et al. Safety of intravenous gadolinium (Gd-BOPTA) infusion in patients with renal insufficiency. Am J Kidney Dis. 2000;36:1207–12.

    Article  PubMed  CAS  Google Scholar 

  89. Joffe P, Thomsen HS, Meusel M. Pharmacokinetics of gadodiamide injection in patients with severe renal insufficiency and patients undergoing hemodialysis or continuous ambulatory peritoneal dialysis. Acad Radiol. 1998;5:491–502.

    Article  PubMed  CAS  Google Scholar 

  90. Swan SK, Lambrecht LJ, Townsend R, et al. Safety and pharmacokinetic profile of gadoneate dimeglumine in subjects with renal impairment. Invest Radiol. 1999;34:443–55.

    Article  PubMed  CAS  Google Scholar 

  91. Weinmann HJ, Brasch RC, Press WR, et al. Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Am J Roentgenol. 1984;142:619–24.

    CAS  Google Scholar 

  92. Lansman JB. Blockade of current through single calcium channels by trivalent lanthanide cations. Effect of ionic radius on the rates of ion entry and exit. J Gen Physiol. 1990;95:679–96.

    Article  PubMed  CAS  Google Scholar 

  93. Biagi BA, Enyeart JJ. Gadolinium blocks low- and highthreshold calcium currents in pituitary cells. Am J Physiol. 1990;259:C515–20.

    PubMed  CAS  Google Scholar 

  94. Itoh N, Kawakita M. Characterization of Gd3+ and Tb3+ binding sites on Ca2+, Mg2  +  -adenosine triphosphatase of sarcoplasmic reticulum. J Biochem. (Tokyo). 1984;95:661–9.

    CAS  Google Scholar 

  95. Husztik E, Lazar G, Parducz A. Electron microscopic study of Kupffer-cell phagocytosis blockade induced by gadolinium chloride. Br J Exp Pathol. 1980;61:624–30.

    PubMed  CAS  Google Scholar 

  96. Palasz A, Czekaj P. Toxicological and cytophysiological aspects of lanthanides action. Acta Biochim Pol. 2000;47:1107–14.

    PubMed  CAS  Google Scholar 

  97. Bellin MF. MR contrast agents, the old and the new. Eur J Radiol. 2006;60:314–23.

    Article  PubMed  Google Scholar 

  98. Lorusso V, Pascolo L, Fernetti C, et al. Magnetic resonance contrast agents: from the bench to the patient. Curr Pharm Des. 2005;11:4079–98.

    Article  PubMed  CAS  Google Scholar 

  99. Tweedle MF. “Stability” of gadolinium chelates. Br J Radiol. 2007;80:581–2.

    Article  Google Scholar 

  100. Schmitt-Willich H. Stability of gadolinium chelates. Br J Radiol. 2007;80:583–4.

    Article  Google Scholar 

  101. Bussi S, Gouillet X, Morisetti A. Toxicological assessment of gadolinium release from contrast media. Exp Toxicol Pathol. 2007;58:323–30.

    Article  PubMed  CAS  Google Scholar 

  102. Sherry AD, Caravan P, Lenkinsi RE. Primer on gadolinium chemistry. J Magn Reson Imaging. 2009;30:1240–8.

    Article  PubMed  Google Scholar 

  103. Idée JM, Port M, Robic C, Medina C, Sabatou M, Corot C. Role of thermodynamic and kinetic parameters in gadolinium chelate stability. J Magn Reson Imaging. 2009;30:1249–58.

    Article  PubMed  Google Scholar 

  104. Idee JM, Port M, Raynal I, et al. Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging. Fundam Clin Pharmacol. 2006;20:563–76.

    Article  PubMed  CAS  Google Scholar 

  105. Morcos SK, Haylor J. Pathophysiology of nephrogenic systemic fibrosis: a review of experimental data. World J Radiol. 2010;2:427–33.

    Article  PubMed  Google Scholar 

  106. Newton BB, Jimenez SA. Mechanism of NSF: new evidence challenging the prevailing theory. J Magn Reson Imaging. 2009;30:1277–83.

    Article  PubMed  Google Scholar 

  107. Wermuth PJ, Del Galdo F, Jimenez SA. Induction of the expression of profibrotic cytokines and growth factors in normal human peripheral blood monocytes by gadolinium contrast agents. Arthritis Rheum. 2009;60:1508–18.

    Article  PubMed  Google Scholar 

  108. Del Galdo F, Wermuth PJ, Addya S, et al. NFκB activation and stimulation of chemokine production in normal human macrophages by the gadolinium-based magnetic resonance contrast agent Omniscan: possible role in the pathogenesis of nephrogenic systemic fibrosis. Ann Rheum Dis. 2010;69:2024–33.

    Article  PubMed  CAS  Google Scholar 

  109. Edward M, Quinn JA, Mukherjee S, et al. Gadodiamide contrast agent ‘activates’ fibroblasts: a possible cause of nephrogenic systemic fibrosis. J Pathol. 2008;4:584–93.

    Article  Google Scholar 

  110. Edward M, Quinn JA, Burden AD, et al. Effect of different classes of gadolinium-based contrast agents on control and nephrogenic systemic fibrosis-derived fibroblast proliferation. Radiology. 2010;256:735–43.

    Article  PubMed  Google Scholar 

  111. Varani J, DaSilva M, Warner RL, et al. Effects of gadolinium-based magnetic resonance imaging contrast agents on human skin in organ culture and human skin fibroblasts. Invest Radiol. 2009;44:74–91.

    Article  PubMed  CAS  Google Scholar 

  112. Bhagavathula N, DaSilva M, Aslam MN, et al. Regulation of collagen turnover in human skin fibroblasts exposed to a gadolinium-based contrast agent. Invest Radiol. 2009;44:433–9.

    Article  PubMed  CAS  Google Scholar 

  113. Bhagavathula N, Dame MK, DaSilva M, et al. Fibroblast reponse to gadolinium: role for platelet-derived growth factor receptor. Invest Radiol. 2010;45(12):769–77.

    Article  PubMed  CAS  Google Scholar 

  114. DaSilva M, O’Brien Deming M, Fligiel SE, et al. Responses of human skin in organ culture and human skin fibroblasts to a gadolinium-based MRI contrast agent: comparison of skin from patients with end-stage renal disease and skin from healthy subjects. Invest Radiol. 2010;45:733–9.

    Article  PubMed  Google Scholar 

  115. Vakil V, Sung JJ, Piecychna M, et al. Gadolinium-containing magnetic resonance image contrast agent promotes fibrocyte differentiation. J Magn Reson Imaging. 2009;30:1284–8.

    Article  PubMed  Google Scholar 

  116. Grant D, Johnsen H, Juelsrud A, et al. Effects of gadolinium contrast agents in naïve and nephrectomized rats: relevance to nephrogenic systemic fibrosis. Acta Radiol. 2009;50:156–69.

    Article  PubMed  CAS  Google Scholar 

  117. Sieber MA, Pietsch H, Walter J, et al. A preclinical study to investigate the development of nephrogenic systemic fibrosis: a possible role for gadolinium-based contrast media. Invest Radiol. 2008;43:65–75.

    Article  PubMed  Google Scholar 

  118. Sieber MA, Lengsfeld P, Walter J, et al. Gadolinium-based contrast agents and their potential role in the pathogenesis of nephrogenic systemic fibrosis: the role of excess ligand. J Magn Reson Imaging. 2008;27:955–62.

    Article  PubMed  Google Scholar 

  119. Sieber MA, Lengsfeld P, Frenzel T, et al. Preclinical investigation to compare different gadolinium-based contrast agents regarding their propensity to release gadolinium in vivo and to trigger nephrogenic systemic fibrosis-like lesions. Eur Radiol. 2008;18:2164–73.

    Article  PubMed  Google Scholar 

  120. Steger-Hartmann T, Raschke M, Riefke B, et al. The involvement of pro-inflammatory cytokines in nephrogenic systemic fibrosis – a mechanistic hypothesis based on preclinical results from a rat model treated with gadodiamide. Exp Toxicol Pathol. 2009;61:537–52.

    Article  PubMed  CAS  Google Scholar 

  121. Pietsch H, Lengsfeld P, Steger-Hartmann T, et al. Long-term retention of gadolinium in the skin of reodents following the administration of gadolinium-based contrast agents. Eur Radiol. 2009;19:1417–24.

    Article  PubMed  Google Scholar 

  122. Pietsch H, Pering C, Lengsfeld P, et al. Evaluating the role of zinc in the occurrence of fibrosis of the skin: a preclinical study. J Magn Reson Imaging. 2009;30:374–83.

    Article  PubMed  Google Scholar 

  123. Hope TA, High WA, Leboit PE, et al. Nephrogenic systemic fibrosis in rats treated with erythropoietin and intravenous iron. Radiology. 2009;253:390–8.

    Article  PubMed  Google Scholar 

  124. Pietsch H, Lengsfeld P, Steger-Hartmann T, et al. Impact of renal impairment on long-term retention of gadolinium in the rodent skin ­following the administration of gadolinium-based contrast agents. Invest Radiol. 2009;44:226–33.

    Article  PubMed  CAS  Google Scholar 

  125. Anders H, Schlondorff D. Murine models of renal disease: possibilities and problems in studies using mutant mice. Exp Nephrol. 2000;8:181–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Wermuth PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wermuth, P.J., Jimenez, S.A. (2012). Nephrogenic Systemic Fibrosis. In: Varga, J., Denton, C., Wigley, F. (eds) Scleroderma. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5774-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5774-0_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5773-3

  • Online ISBN: 978-1-4419-5774-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics