Skip to main content

Immunological Mechanisms

  • Chapter
  • First Online:
Scleroderma

Abstract

Systemic sclerosis (SSc) is classically included within the spectrum of autoimmune systemic disorders. Two are the main historical reasons. One is the high prevalence of antinuclear autoantibodies (autoAb) in the sera of individuals suffering from SSc, which for several decades has been taken per se as a proof of autoimmunity. The second is that clinical features characteristically present in SSc are shared with other autoimmune systemic conditions such as systemic lupus erythematousus (SLE), rheumatoid arthritis (RA), or overlapping syndromes including mixed connective tissue disease and overlaps with myositis. It should be noted though that there is no established animal model able to reproduce the clinical phenotype of SSc upon immunization or passive transfer of immune cells or antibodies. Thus, SSc falls short of satisfying the postulates that allow a nosologic entity to be definitively classified within the disorders having an autoimmune origin. Nonetheless, during the last three decades an enormous amount of work has provided evidence indicating that different cells and soluble mediators belonging to the immune system present abnormalities that correlate with distinct SSc phenotypes and may be pathologically linked to disease development. It is however a challenge to reconstruct the chain of events leading to the perturbed state and attribute them a causal rather than a consequential role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Yurovsky VV, Wigley FM, Wise RA, White B. Skewing of the CD8+ T-cell repertoire in the lungs of patients with systemic sclerosis. Hum Immunol. 1996;48(1–2):84–97.

    Article  PubMed  CAS  Google Scholar 

  2. Sakkas LI, Xu B, Artlett CM, Lu S, Jimenez SA, Platsoucas CD. Oligoclonal T cell expansion in the skin of patients with systemic sclerosis. J Immunol. 2002;168(7):3649–59.

    PubMed  CAS  Google Scholar 

  3. Parel Y, Aurrand-Lions M, Scheja A, Dayer JM, Roosnek E, Chizzolini C. Presence of CD4  +  CD8+ double-positive T cells with very high interleukin-4 production potential in lesional skin of patients with systemic sclerosis. Arthritis Rheum. 2007;56(10):3459–67.

    Article  PubMed  CAS  Google Scholar 

  4. Farge D, Henegar C, Carmagnat M, et al. Analysis of immune reconstitution after autologous bone marrow transplantation in systemic sclerosis. Arthritis Rheum. 2005;52(5):1555–63.

    Article  PubMed  CAS  Google Scholar 

  5. McSweeney PA, Nash RA, Sullivan KM, et al. High-dose immunosuppressive therapy for severe systemic sclerosis: initial outcomes. Blood. 2002;100(5):1602–10.

    PubMed  CAS  Google Scholar 

  6. Oyama Y, Barr WG, Statkute L, et al. Autologous non-myeloablative hematopoietic stem cell transplantation in patients with systemic sclerosis. Bone Marrow Transpl. 2007;40(6):549–55.

    Article  CAS  Google Scholar 

  7. Rizou C, Ioannidis JP, Panou-Pomonis E, et al. B-cell epitope mapping of DNA topoisomerase I defines epitopes strongly associated with pulmonary fibrosis in systemic sclerosis. Am J Respir Cell Mol Biol. 2000;22(3):344–51.

    PubMed  CAS  Google Scholar 

  8. Hu PQ, Hurwitz AA, Oppenheim JJ. Immunization with DNA topoisomerase I induces autoimmune responses but not scleroderma-like pathologies in mice. J Rheumatol. 2007;34(11):2243–52.

    PubMed  CAS  Google Scholar 

  9. Boin F, Wigley FM, Schneck JP, Oelke M, Rosen A. Evaluation of topoisomerase-1-specific CD8+ T-cell response in systemic sclerosis. Ann N Y Acad Sci. 2005;1062:137–45. Available from: internal-pdf://BoinF - Annals-1414867200/BoinF - Annals.pdf.

    Article  PubMed  CAS  Google Scholar 

  10. Kuwana M, Medsger Jr TA, Wright TM. T cell proliferative response induced by DNA topoisomerase I in patients with systemic sclerosis and healthy donors. J Clin Invest. 1995;96(1):586–96.

    Article  PubMed  CAS  Google Scholar 

  11. Hu PQ, Oppenheim JJ, Medsger Jr TA, Wright TM. T cell lines from systemic sclerosis patients and healthy controls recognize multiple epitopes on DNA topoisomerase I. J Autoimmun. 2006;26(4):258–67.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshizaki A, Yanaba K, Ogawa A, Asano Y, Kadono T, Sato S. Immunization with DNA topoisomerase I and complete Freund’s adjuvant induces skin and lung fibrosis and autoimmunity via interleukin-6 signaling. Arthritis Rheum. 2011. doi:10.1002/art.30539. submitted.

  13. Lipsky PE. Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity. Nat Immunol. 2001;2(9):764–6.

    Article  PubMed  CAS  Google Scholar 

  14. Lafyatis R, O’Hara C, Feghali-Bostwick CA, Matteson E. B cell infiltration in systemic sclerosis-associated interstitial lung disease. Arthritis Rheum. 2007;56(9):3167–8.

    Article  PubMed  Google Scholar 

  15. Whitfield ML, Finlay DR, Murray JI, et al. Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci U S A. 2003;100(21):12319–24.

    Article  PubMed  CAS  Google Scholar 

  16. Sato S, Fujimoto M, Hasegawa M, Takehara K. Altered blood B lymphocyte homeostasis in systemic sclerosis: expanded naive B cells and diminished but activated memory B cells. Arthritis Rheum. 2004;50(6):1918–27.

    Article  PubMed  Google Scholar 

  17. Wang J, Watanabe T. Expression and function of Fas during differentiation and activation of B cells. Int Rev Immunol. 1999;18(4):367–79.

    Article  PubMed  CAS  Google Scholar 

  18. Sato S, Hasegawa M, Fujimoto M, Tedder TF, Takehara K. Quantitative genetic variation in CD19 expression correlates with autoimmunity. J Immunol. 2000;165(11):6635–43.

    PubMed  CAS  Google Scholar 

  19. Tsuchiya N, Kuroki K, Fujimoto M, et al. Association of a functional CD19 polymorphism with susceptibility to systemic sclerosis. Arthritis Rheum. 2004;50(12):4002–7.

    Article  PubMed  CAS  Google Scholar 

  20. Yoshizaki A, Iwata Y, Komura K, et al. CD19 regulates skin and lung fibrosis via toll-like receptor signaling in a model of bleomycin-induced scleroderma. Am J Pathol. 2008;172(6):1650–63.

    Article  PubMed  CAS  Google Scholar 

  21. Mackay F, Browning JL. BAFF: a fundamental survival factor for B cells. Nat Rev Immunol. 2002;2(7):465–75.

    Article  PubMed  CAS  Google Scholar 

  22. Matsushita T, Hasegawa M, Yanaba K, Kodera M, Takehara K, Sato S. Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum. 2006;54(1):192–201.

    Article  PubMed  CAS  Google Scholar 

  23. Matsushita T, Fujimoto M, Hasegawa M, et al. Elevated serum APRIL levels in patients with systemic sclerosis: distinct profiles of systemic sclerosis categorized by APRIL and BAFF. J Rheumatol. 2007;34(10):2056–62.

    PubMed  CAS  Google Scholar 

  24. Bielecki M, Kowal K, Lapinska A, Bernatowicz P, Chyczewski L, Kowal-Bielecka O. Increased production of a proliferation-inducing ligand (APRIL) by peripheral blood mononuclear cells is associated with antitopoisomerase I antibody and more severe disease in systemic sclerosis. J Rheumatol. 2010;37(11):2286–9.

    Article  PubMed  Google Scholar 

  25. Prescott RJ, Freemont AJ, Jones CJ, Hoyland J, Fielding P. Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol. 1992;166(3):255–63.

    Article  PubMed  CAS  Google Scholar 

  26. Kahari VM, Sandberg M, Kalimo H, Vuorio T, Vuorio E. Identification of fibroblasts responsible for increased collagen production in localized scleroderma by in situ hybridization. J Invest Dermatol. 1988;90(5):664–70.

    Article  PubMed  CAS  Google Scholar 

  27. Scharffetter K, Lankat-Buttgereit B, Krieg T. Localization of collagen mRNA in normal and scleroderma skin by in-situ hybridization. Eur J Clin Invest. 1988;18(1):9–17.

    Article  PubMed  CAS  Google Scholar 

  28. Sondergaard K, Stengaard-Pedersen K, Zachariae H, Heickendorff L, Deleuran M, Deleuran B. Soluble intercellular adhesion molecule-1 (sICAM-1) and soluble interleukin-2 receptors (sIL-2R) in scleroderma skin. Br J Rheumatol. 1998;37(3):304–10.

    Article  PubMed  CAS  Google Scholar 

  29. Truchetet ME, Brembilla NC, Montanari E, Chizzolini C. T-cell subsets in scleroderma patients. Expert Rev Dermatol. 2010;5:403–15. 403.

    Article  CAS  Google Scholar 

  30. Zhu J, Paul WE. CD4 T cells: Fates, functions, and faults. Blood. 2008;112(5):1557–69.

    Article  PubMed  CAS  Google Scholar 

  31. Annunziato F, Romagnani S. Do studies in humans better depict Th17 cells? Blood. 2009;114(11):2213–9.

    Article  PubMed  CAS  Google Scholar 

  32. Annunziato F, Romagnani S. Heterogeneity of human effector CD4+ T cells. Arthritis Res Ther. 2009;11(6):257.

    Article  PubMed  CAS  Google Scholar 

  33. Hoffmann KF, McCarty TC, Segal DH, et al. Disease fingerprinting with cDNA microarrays reveals distinct gene expression profiles in lethal type 1 and type 2 cytokine-mediated inflammatory reactions. FASEB J. 2001;15(13):2545–7.

    PubMed  CAS  Google Scholar 

  34. Sandler NG, Mentink-Kane MM, Cheever AW, Wynn TA. Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. J Immunol. 2003;171(7):3655–67.

    PubMed  CAS  Google Scholar 

  35. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210.

    Article  PubMed  CAS  Google Scholar 

  36. Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004;4(8):583–94.

    Article  PubMed  CAS  Google Scholar 

  37. Rosenbloom J, Feldman G, Freundlich B, Jimenez SA. Inhibition of excessive scleroderma fibroblast collagen production by recombinant gamma-interferon. association with a coordinate decrease in types I and III procollagen messenger RNA levels. Arthritis Rheum. 1986;29(7):851–6.

    Article  PubMed  CAS  Google Scholar 

  38. Postlethwaite AE, Holness MA, Katai H, Raghow R. Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4. J Clin Invest. 1992;90(4):1479–85.

    Article  PubMed  CAS  Google Scholar 

  39. Serpier H, Gillery P, Salmon-Ehr V, et al. Antagonistic effects of interferon-gamma and interleukin-4 on fibroblast cultures. J Invest Dermatol. 1997;109(2):158–62.

    Article  PubMed  CAS  Google Scholar 

  40. Oriente A, Fedarko NS, Pacocha SE, Huang SK, Lichtenstein LM, Essayan DM. Interleukin-13 modulates collagen homeostasis in human skin and keloid fibroblasts. J Pharmacol Exp Ther. 2000;292(3):988–94.

    PubMed  CAS  Google Scholar 

  41. McGaha T, Saito S, Phelps RG, et al. Lack of skin fibrosis in tight skin (TSK) mice with targeted mutation in the interleukin-4R alpha and transforming growth factor-beta genes. J Invest Dermatol. 2001;116(1):136–43.

    Article  PubMed  CAS  Google Scholar 

  42. Kodera T, McGaha TL, Phelps R, Paul WE, Bona CA. Disrupting the IL-4 gene rescues mice homozygous for the tight-skin mutation from embryonic death and diminishes TGF-beta production by fibroblasts. Proc Natl Acad Sci U S A. 2002;99(6):3800–5.

    Article  PubMed  CAS  Google Scholar 

  43. Lee CG, Homer RJ, Zhu Z, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med. 2001;194(6):809–21.

    Article  PubMed  CAS  Google Scholar 

  44. Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A. IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med. 2006;12(1):99–106.

    Article  PubMed  CAS  Google Scholar 

  45. Wilson MS, Madala SK, Ramalingam TR, et al. Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med. 2010;207(3):535–52.

    Article  PubMed  CAS  Google Scholar 

  46. Ferrarini M, Steen V, Medsger Jr TA, Whiteside TL. Functional and phenotypic analysis of T lymphocytes cloned from the skin of patients with systemic sclerosis. Clin Exp Immunol. 1990;79(3):346–52.

    Article  PubMed  CAS  Google Scholar 

  47. Gruschwitz MS, Vieth G. Up-regulation of class II major histocompatibility complex and intercellular adhesion molecule 1 expression on scleroderma fibroblasts and endothelial cells by interferon-gamma and tumor necrosis factor alpha in the early disease stage. Arthritis Rheum. 1997;40(3):540–50.

    Article  PubMed  CAS  Google Scholar 

  48. Mavalia C, Scaletti C, Romagnani P, et al. Type 2 helper T-cell predominance and high CD30 expression in systemic sclerosis. Am J Pathol. 1997;151(6):1751–8.

    PubMed  CAS  Google Scholar 

  49. Scaletti C, Vultaggio A, Bonifacio S, et al. Th2-oriented profile of male offspring T cells present in women with systemic sclerosis and reactive with maternal major histocompatibility complex antigens. Arthritis Rheum. 2002;46(2):445–50.

    Article  PubMed  CAS  Google Scholar 

  50. Atamas SP, Yurovsky VV, Wise R, et al. Production of type 2 cytokines by CD8+ lung cells is associated with greater decline in pulmonary function in patients with systemic sclerosis. Arthritis Rheum. 1999;42(6):1168–78.

    Article  PubMed  CAS  Google Scholar 

  51. Luzina IG, Atamas SP, Wise R, Wigley FM, Xiao HQ, White B. Gene expression in bronchoalveolar lavage cells from scleroderma patients. Am J Respir Cell Mol Biol. 2002;26(5):549–57.

    PubMed  CAS  Google Scholar 

  52. Boin F, De Fanis U, Bartlett SJ, Wigley FM, Rosen A, Casolaro V. T cell polarization identifies distinct clinical phenotypes in scleroderma lung disease. Arthritis Rheum. 2008;58(4):1165–74.

    Article  PubMed  Google Scholar 

  53. Del Galdo F, Jimenez SA. T cells expressing allograft inflammatory factor 1 display increased chemotaxis and induce a profibrotic phenotype in normal fibroblasts in vitro. Arthritis Rheum. 2007;56(10):3478–88.

    Article  PubMed  CAS  Google Scholar 

  54. Salmon-Ehr V, Serpier H, Nawrocki B, et al. Expression of interleukin-4 in scleroderma skin specimens and scleroderma fibroblast cultures. potential role in fibrosis. Arch Dermatol. 1996;132(7):802–6.

    Article  PubMed  CAS  Google Scholar 

  55. Fuschiotti P, Medsger Jr TA, Morel PA. Effector CD8+ T cells in systemic sclerosis patients produce abnormally high levels of interleukin-13 associated with increased skin fibrosis. Arthritis Rheum. 2009;60(4):1119–28.

    Article  PubMed  CAS  Google Scholar 

  56. Valentini G, Baroni A, Esposito K, et al. Peripheral blood T lymphocytes from systemic sclerosis patients show both Th1 and Th2 activation. J Clin Immunol. 2001;21(3):210–7.

    Article  PubMed  CAS  Google Scholar 

  57. Sato S, Hanakawa H, Hasegawa M, et al. Levels of interleukin 12, a cytokine of type 1 helper T cells, are elevated in sera from patients with systemic sclerosis. J Rheumatol. 2000;27(12):2838–42.

    PubMed  CAS  Google Scholar 

  58. Sato S, Hasegawa M, Takehara K. Serum levels of interleukin-6 and interleukin-10 correlate with total skin thickness score in patients with systemic sclerosis. J Dermatol Sci. 2001;27(2):140–6.

    Article  PubMed  CAS  Google Scholar 

  59. Matsushita T, Hasegawa M, Hamaguchi Y, Takehara K, Sato S. Longitudinal analysis of serum cytokine concentrations in systemic sclerosis: association of interleukin 12 elevation with spontaneous regression of skin sclerosis. J Rheumatol. 2006;33(2):275–84.

    PubMed  CAS  Google Scholar 

  60. Kurasawa K, Hirose K, Sano H, et al. Increased interleukin-17 production in patients with systemic sclerosis. Arthritis Rheum. 2000;43(11):2455–63.

    Article  PubMed  CAS  Google Scholar 

  61. Murata M, Fujimoto M, Matsushita T, et al. Clinical association of serum interleukin-17 levels in systemic sclerosis: is systemic sclerosis a Th17 disease? J Dermatol Sci. 2008;50(3):240–2.

    Article  PubMed  CAS  Google Scholar 

  62. Meloni F, Solari N, Cavagna L, Morosini M, Montecucco CM, Fietta AM. Frequency of Th1, Th2 and Th17 producing T lymphocytes in bronchoalveolar lavage of patients with systemic sclerosis. Clin Exp Rheumatol. 2009;27(5):765–72.

    PubMed  CAS  Google Scholar 

  63. Radstake TR, van Bon L, Broen J, et al. Increased frequency and compromised function of T regulatory cells in systemic sclerosis (SSc) is related to a diminished CD69 and TGFbeta expression. PLoS ONE. 2009;4(6):e5981.

    Article  PubMed  CAS  Google Scholar 

  64. Brembilla NC, Truchetet ME, Montanari E, Allanore Y, Chizzolini C. Enhanced IL-17A and IL-22 production by peripheral blood mononuclear cells distinguish systemic sclerosis from healthy individuals. Submitted. 2010.

    Google Scholar 

  65. Fossiez F, Djossou O, Chomarat P, et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996;183(6):2593–603.

    Article  PubMed  CAS  Google Scholar 

  66. Radstake TR, van Bon L, Broen J, et al. The pronounced Th17 profile in systemic sclerosis (SSc) together with intracellular expression of TGFbeta and IFNgamma distinguishes SSc phenotypes. PLoS ONE. 2009;4(6):e5903.

    Article  PubMed  CAS  Google Scholar 

  67. Komura K, Fujimoto M, Hasegawa M, et al. Increased serum interleukin 23 in patients with systemic sclerosis. J Rheumatol. 2008;35(1):120–5.

    Article  PubMed  CAS  Google Scholar 

  68. Antiga E, Quaglino P, Bellandi S, et al. Regulatory T cells in the skin lesions and blood of patients with systemic sclerosis and morphoea. Br J Dermatol. 2010;162(5):1056–63. 1056.

    Article  PubMed  CAS  Google Scholar 

  69. Broen JC, Wolvers-Tettero IL, Geurts-van Bon L, et al. Skewed X chromosomal inactivation impacts T regulatory cell function in systemic sclerosis. Ann Rheum Dis. 2010;69(12):2213–6.

    Article  PubMed  CAS  Google Scholar 

  70. Giovannetti A, Rosato E, Renzi C, et al. Analyses of T cell phenotype and function reveal an altered T cell homeostasis in systemic sclerosis correlations with disease severity and phenotypes. Clin Immunol. 2010;137(1):122–33. 122.

    Article  PubMed  CAS  Google Scholar 

  71. Fukasawa C, Kawaguchi Y, Harigai M, et al. Increased CD40 expression in skin fibroblasts from patients with systemic sclerosis (SSc): Role of CD40-CD154 in the phenotype of SSc fibroblasts. Eur J Immunol. 2003;33(10):2792–800.

    Article  PubMed  CAS  Google Scholar 

  72. Komura K, Sato S, Hasegawa M, Fujimoto M, Takehara K. Elevated circulating CD40L concentrations in patients with systemic sclerosis. J Rheumatol. 2004;31(3):514–9.

    PubMed  CAS  Google Scholar 

  73. Komura K, Fujimoto M, Matsushita T, et al. Increased serum soluble CD40 levels in patients with systemic sclerosis. J Rheumatol. 2007;34(2):353–8.

    PubMed  CAS  Google Scholar 

  74. Kawai M, Masuda A, Kuwana M. A CD40-CD154 interaction in tissue fibrosis. Arthritis Rheum. 2008;58(11):3562–73.

    Article  PubMed  CAS  Google Scholar 

  75. Komura K, Fujimoto M, Yanaba K, et al. Blockade of CD40/CD40 ligand interactions attenuates skin fibrosis and autoimmunity in the tight-skin mouse. Ann Rheum Dis. 2008;67(6):867–72.

    Article  PubMed  CAS  Google Scholar 

  76. Chizzolini C, Rezzonico R, Ribbens C, Burger D, Wollheim FA, Dayer JM. Inhibition of type I collagen production by dermal fibroblasts upon contact with activated T cells: different sensitivity to inhibition between systemic sclerosis and control fibroblasts. Arthritis Rheum. 1998;41(11):2039–47.

    Article  PubMed  CAS  Google Scholar 

  77. Chizzolini C, Parel Y, De Luca C, et al. Systemic sclerosis Th2 cells inhibit collagen production by dermal fibroblasts via membrane-associated tumor necrosis factor alpha. Arthritis Rheum. 2003;48(9):2593–604.

    Article  PubMed  CAS  Google Scholar 

  78. Kuwana M, Medsger Jr TA, Wright TM. Highly restricted TCR-alpha beta usage by autoreactive human T cell clones specific for DNA topoisomerase I: recognition of an immunodominant epitope. J Immunol. 1997;158(1):485–91.

    PubMed  CAS  Google Scholar 

  79. Nelson JL, Furst DE, Maloney S, et al. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet. 1998;351(9102):559–62.

    Article  PubMed  CAS  Google Scholar 

  80. Artlett CM, Smith JB, Jimenez SA. Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. N Engl J Med. 1998;338(17):1186–91.

    Article  PubMed  CAS  Google Scholar 

  81. Zhang Y, McCormick LL, Desai SR, Wu C, Gilliam AC. Murine sclerodermatous graft-versus-host disease, a model for human scleroderma: cutaneous cytokines, chemokines, and immune cell activation. J Immunol. 2002;168(6):3088–98.

    PubMed  CAS  Google Scholar 

  82. Kawaguchi Y, Hara M, Wright TM. Endogenous IL-1alpha from systemic sclerosis fibroblasts induces IL-6 and PDGF-A. J Clin Invest. 1999;103(9):1253–60.

    Article  PubMed  CAS  Google Scholar 

  83. Kawaguchi Y, McCarthy SA, Watkins SC, Wright TM. Autocrine activation by interleukin 1alpha induces the fibrogenic phenotype of systemic sclerosis fibroblasts. J Rheumatol. 2004;31(10):1946–54.

    PubMed  CAS  Google Scholar 

  84. Kawaguchi Y, Nishimagi E, Tochimoto A, et al. Intracellular IL-1alpha-binding proteins contribute to biological functions of endogenous IL-1alpha in systemic sclerosis fibroblasts. Proc Natl Acad Sci U S A. 2006;103(39):14501–6.

    Article  PubMed  CAS  Google Scholar 

  85. Kanangat S, Postlethwaite AE, Higgins GC, Hasty KA. Novel functions of intracellular IL-1ra in human dermal fibroblasts: implications in the pathogenesis of fibrosis. J Invest Dermatol. 2006;126(4):756–65.

    Article  PubMed  CAS  Google Scholar 

  86. Denton CP, Xu S, Black CM, Pearson JD. Scleroderma fibroblasts show increased responsiveness to endothelial cell-derived IL-1 and bFGF. J Invest Dermatol. 1997;108(3):269–74.

    Article  PubMed  CAS  Google Scholar 

  87. Aden N, Nuttall A, Shiwen X, et al. Epithelial cells promote fibroblast activation via IL-1alpha in systemic sclerosis. J Invest Dermatol. 2010;130(9):2191–200.

    Article  PubMed  CAS  Google Scholar 

  88. Hasegawa M, Fujimoto M, Kikuchi K, Takehara K. Elevated serum tumor necrosis factor-alpha levels in patients with systemic sclerosis: association with pulmonary fibrosis. J Rheumatol. 1997;24(4):663–5.

    PubMed  CAS  Google Scholar 

  89. Scala E, Pallotta S, Frezzolini A, et al. Cytokine and chemokine levels in systemic sclerosis: relationship with cutaneous and internal organ involvement. Clin Exp Immunol. 2004;138(3):540–6.

    Article  PubMed  CAS  Google Scholar 

  90. Bolster MB, Ludwicka A, Sutherland SE, Strange C, Silver RM. Cytokine concentrations in bronchoalveolar lavage fluid of patients with systemic sclerosis. Arthritis Rheum. 1997;40(4):743–51.

    Article  PubMed  CAS  Google Scholar 

  91. Mauviel A, Daireaux M, Redini F, Galera P, Loyau G, Pujol JP. Tumor necrosis factor inhibits collagen and fibronectin synthesis in human dermal fibroblasts. FEBS Lett. 1988;236(1):47–52.

    Article  PubMed  CAS  Google Scholar 

  92. Chizzolini C, Parel Y, Scheja A, Dayer JM. Polarized subsets of human T-helper cells induce distinct patterns of chemokine production by normal and systemic sclerosis dermal fibroblasts. Arthritis Res Ther. 2006;8(1):R10.

    Article  PubMed  CAS  Google Scholar 

  93. Ostor AJ, Crisp AJ, Somerville MF, Scott DG. Fatal exacerbation of rheumatoid arthritis associated fibrosing alveolitis in patients given infliximab. BMJ. 2004;329(7477):1266.

    Article  PubMed  Google Scholar 

  94. Allanore Y, Devos-Francois G, Caramella C, Boumier P, Jounieaux V, Kahan A. Fatal exacerbation of fibrosing alveolitis associated with systemic sclerosis in a patient treated with adalimumab. Ann Rheum Dis. 2006;65(6):834–5.

    Article  PubMed  CAS  Google Scholar 

  95. Mauviel A, Heino J, Kahari VM, et al. Comparative effects of interleukin-1 and tumor necrosis factor-alpha on collagen production and corresponding procollagen mRNA levels in human dermal fibroblasts. J Invest Dermatol. 1991;96(2):243–9.

    Article  PubMed  CAS  Google Scholar 

  96. Solis-Herruzo JA, Brenner DA, Chojkier M. Tumor necrosis factor alpha inhibits collagen gene transcription and collagen synthesis in cultured human fibroblasts. J Biol Chem. 1988;263(12):5841–5.

    PubMed  CAS  Google Scholar 

  97. Verrecchia F, Mauviel A. TGF-beta and TNF-alpha: antagonistic cytokines controlling type I collagen gene expression. Cell Signal. 2004;16(8):873–80.

    Article  PubMed  CAS  Google Scholar 

  98. Sime PJ, Marr RA, Gauldie D, et al. Transfer of tumor necrosis factor-alpha to rat lung induces severe pulmonary inflammation and patchy interstitial fibrogenesis with induction of transforming growth factor-beta1 and myofibroblasts. Am J Pathol. 1998;153(3):825–32.

    Article  PubMed  CAS  Google Scholar 

  99. Sullivan DE, Ferris M, Pociask D, Brody AR. Tumor necrosis factor-alpha induces transforming growth factor-beta1 expression in lung fibroblasts through the extracellular signal-regulated kinase pathway. Am J Respir Cell Mol Biol. 2005;32(4):342–9.

    Article  PubMed  CAS  Google Scholar 

  100. Piguet PF, Collart MA, Grau GE, Kapanci Y, Vassalli P. Tumor necrosis factor/cachectin plays a key role in bleomycin-induced pneumopathy and fibrosis. J Exp Med. 1989;170(3):655–63.

    Article  PubMed  CAS  Google Scholar 

  101. Needleman BW, Wigley FM, Stair RW. Interleukin-1, interleukin-2, interleukin-4, interleukin-6, tumor necrosis factor alpha, and interferon-gamma levels in sera from patients with scleroderma. Arthritis Rheum. 1992;35(1):67–72.

    Article  PubMed  CAS  Google Scholar 

  102. Hasegawa M, Sato S, Fujimoto M, Ihn H, Kikuchi K, Takehara K. Serum levels of interleukin 6 (IL-6), oncostatin M, soluble IL-6 receptor, and soluble gp130 in patients with systemic sclerosis. J Rheumatol. 1998;25(2):308–13.

    PubMed  CAS  Google Scholar 

  103. Feghali CA, Bost KL, Boulware DW, Levy LS. Control of IL-6 expression and response in fibroblasts from patients with systemic sclerosis. Autoimmunity. 1994;17(4):309–18.

    Article  PubMed  CAS  Google Scholar 

  104. Chizzolini C, Raschi E, Rezzonico R, et al. Autoantibodies to fibroblasts induce a proadhesive and proinflammatory fibroblast phenotype in patients with systemic sclerosis. Arthritis Rheum. 2002;46(6):1602–13.

    Article  PubMed  CAS  Google Scholar 

  105. Takemura H, Suzuki H, Fujisawa H, et al. Enhanced interleukin 6 production by cultured fibroblasts from patients with systemic sclerosis in response to platelet derived growth factor. J Rheumatol. 1998;25(8):1534–9.

    PubMed  CAS  Google Scholar 

  106. Giacomelli R, Cipriani P, Danese C, et al. Peripheral blood mononuclear cells of patients with systemic sclerosis produce increased amounts of interleukin 6, but not transforming growth factor beta 1. J Rheumatol. 1996;23(2):291–6.

    PubMed  CAS  Google Scholar 

  107. Hasegawa M, Sato S, Ihn H, Takehara K. Enhanced production of interleukin-6 (IL-6), oncostatin M and soluble IL-6 receptor by cultured peripheral blood mononuclear cells from patients with systemic sclerosis. Rheumatology (Oxford). 1999;38(7):612–7.

    Article  CAS  Google Scholar 

  108. Bosello S, De Santis M, Lama G, et al. B cell depletion in diffuse progressive systemic sclerosis: safety, skin score modification and IL-6 modulation in an up to thirty-six months follow-up open-label trial. Arthritis Res Ther. 2010;12(2):R54.

    Article  PubMed  CAS  Google Scholar 

  109. Shima Y, Kuwahara Y, Murota H, et al. The skin of patients with systemic sclerosis softened during the treatment with anti-IL-6 receptor antibody tocilizumab. Rheumatology (Oxford). 2010;49(12):2408–12.

    Article  CAS  Google Scholar 

  110. Allen SJ, Crown SE, Handel TM. Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol. 2007;25:787–820.

    Article  PubMed  CAS  Google Scholar 

  111. Bacon K, Baggiolini M, Broxmeyer H, et al. Chemokine/chemokine receptor nomenclature. J Interferon Cytokine Res. 2002;22(10):1067–8.

    Article  PubMed  Google Scholar 

  112. Strieter RM, Belperio JA, Phillips RJ, Keane MP. CXC chemokines in angiogenesis of cancer. Semin Cancer Biol. 2004;14(3):195–200.

    Article  PubMed  CAS  Google Scholar 

  113. Karrer S, Bosserhoff AK, Weiderer P, et al. The −2518 promotor polymorphism in the MCP-1 gene is associated with systemic sclerosis. J Invest Dermatol. 2005;124(1):92–8.

    Article  PubMed  CAS  Google Scholar 

  114. Carulli MT, Spagnolo P, Fonseca C, et al. Single-nucleotide polymorphisms in CCL2 gene are not associated with susceptibility to systemic sclerosis. J Rheumatol. 2008;35(5):839–44.

    PubMed  CAS  Google Scholar 

  115. Radstake TR, Gorlova O, Rueda B, et al. Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat Genet. 2010;42(5):426–9.

    Article  PubMed  CAS  Google Scholar 

  116. Carulli MT, Handler C, Coghlan JG, Black CM, Denton CP. Can CCL2 serum levels be used in risk stratification or to monitor treatment response in systemic sclerosis? Ann Rheum Dis. 2008;67(1):105–9.

    Article  PubMed  CAS  Google Scholar 

  117. Antonelli A, Ferri C, Fallahi P, et al. CXCL10 (alpha) and CCL2 (beta) chemokines in systemic sclerosis–a longitudinal study. Rheumatology (Oxford). 2008;47(1):45–9.

    Article  CAS  Google Scholar 

  118. Hasegawa M, Sato S, Takehara K. Augmented production of chemokines (monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1alpha (MIP-1alpha) and MIP-1beta) in patients with systemic sclerosis: MCP-1 and MIP-1alpha may be involved in the development of pulmonary fibrosis. Clin Exp Immunol. 1999;117(1):159–65.

    Article  PubMed  CAS  Google Scholar 

  119. Schmidt K, Martinez-Gamboa L, Meier S, et al. Bronchoalveoloar lavage fluid cytokines and chemokines as markers and predictors for the outcome of interstitial lung disease in systemic sclerosis patients. Arthritis Res Ther. 2009;11(4):R111.

    Article  PubMed  CAS  Google Scholar 

  120. Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature. 2000;404(6776):407–11.

    Article  PubMed  CAS  Google Scholar 

  121. Distler JH, Jungel A, Caretto D, et al. Monocyte chemoattractant protein 1 released from glycosaminoglycans mediates its profibrotic effects in systemic sclerosis via the release of interleukin-4 from T cells. Arthritis Rheum. 2006;54(1):214–25.

    Article  PubMed  CAS  Google Scholar 

  122. Gharaee-Kermani M, McCullumsmith RE, Charo IF, Kunkel SL, Phan SH. CC-chemokine receptor 2 required for bleomycin-induced pulmonary fibrosis. Cytokine. 2003;24(6):266–76.

    Article  PubMed  CAS  Google Scholar 

  123. Yamamoto T, Nishioka K. Role of monocyte chemoattractant protein-1 and its receptor, CCR-2, in the pathogenesis of bleomycin-induced scleroderma. J Invest Dermatol. 2003;121(3):510–6.

    Article  PubMed  CAS  Google Scholar 

  124. Kimura M, Kawahito Y, Hamaguchi M, et al. SKL-2841, a dual antagonist of MCP-1 and MIP-1 beta, prevents bleomycin-induced skin sclerosis in mice. Biomed Pharmacother. 2007;61(4):222–8.

    Article  PubMed  CAS  Google Scholar 

  125. Yamamoto T, Eckes B, Mauch C, Hartmann K, Krieg T. Monocyte chemoattractant protein-1 enhances gene expression and synthesis of matrix metalloproteinase-1 in human fibroblasts by an autocrine IL-1 alpha loop. J Immunol. 2000;164(12):6174–9.

    PubMed  CAS  Google Scholar 

  126. Distler O, Pap T, Kowal-Bielecka O, et al. Overexpression of monocyte chemoattractant protein 1 in systemic sclerosis: role of platelet-derived growth factor and effects on monocyte chemotaxis and collagen synthesis. Arthritis Rheum. 2001;44(11):2665–78.

    Article  PubMed  CAS  Google Scholar 

  127. Galindo M, Santiago B, Rivero M, Rullas J, Alcami J, Pablos JL. Chemokine expression by systemic sclerosis fibroblasts: abnormal regulation of monocyte chemoattractant protein 1 expression. Arthritis Rheum. 2001;44(6):1382–6.

    Article  PubMed  CAS  Google Scholar 

  128. Denton CP, Shi-Wen X, Sutton A, Abraham DJ, Black CM, Pearson JD. Scleroderma fibroblasts promote migration of mononuclear leucocytes across endothelial cell monolayers. Clin Exp Immunol. 1998;114(2):293–300.

    Article  PubMed  CAS  Google Scholar 

  129. Carulli MT, Ong VH, Ponticos M, et al. Chemokine receptor CCR2 expression by systemic sclerosis fibroblasts: evidence for autocrine regulation of myofibroblast differentiation. Arthritis Rheum. 2005;52(12):3772–82.

    Article  PubMed  CAS  Google Scholar 

  130. Ong VH, Evans LA, Shiwen X, et al. Monocyte chemoattractant protein 3 as a mediator of fibrosis: overexpression in systemic sclerosis and the type 1 tight-skin mouse. Arthritis Rheum. 2003;48(7):1979–91.

    Article  PubMed  CAS  Google Scholar 

  131. Yanaba K, Komura K, Kodera M, et al. Serum levels of monocyte chemotactic protein-3/CCL7 are raised in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis. Ann Rheum Dis. 2006;65(1):124–6.

    Article  PubMed  CAS  Google Scholar 

  132. Yanaba K, Yoshizaki A, Muroi E, et al. CCL13 is a promising diagnostic marker for systemic sclerosis. Br J Dermatol. 2010;162(2):332–6.

    Article  PubMed  CAS  Google Scholar 

  133. Yang X, Walton WW, Cook DN, et al. The chemokine, CCL3, and its receptor, CCR1, mediate thoracic radiation-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2010;45(1):127–35.

    Article  PubMed  CAS  Google Scholar 

  134. Anderegg U, Saalbach A, Haustein UF. Chemokine release from activated human dermal microvascular endothelial cells–implications for the pathophysiology of scleroderma? Arch Dermatol Res. 2000;292(7):341–7.

    Article  PubMed  CAS  Google Scholar 

  135. Distler O, Rinkes B, Hohenleutner U, et al. Expression of RANTES in biopsies of skin and upper gastrointestinal tract from patients with systemic sclerosis. Rheumatol Int. 1999;19(1–2):39–46.

    Article  PubMed  CAS  Google Scholar 

  136. Grigoryev DN, Mathai SC, Fisher MR, et al. Identification of candidate genes in scleroderma-related pulmonary arterial hypertension. Transl Res. 2008;151(4):197–207.

    Article  PubMed  CAS  Google Scholar 

  137. Dorfmuller P, Zarka V, Durand-Gasselin I, et al. Chemokine RANTES in severe pulmonary arterial hypertension. Am J Respir Crit Care Med. 2002;165(4):534–9.

    PubMed  Google Scholar 

  138. Tuder RM, Groves B, Badesch DB, Voelkel NF. Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol. 1994;144(2):275–85.

    PubMed  CAS  Google Scholar 

  139. Molet S, Furukawa K, Maghazechi A, Hamid Q, Giaid A. Chemokine- and cytokine-induced expression of endothelin 1 and endothelin-converting enzyme 1 in endothelial cells. J Allergy Clin Immunol. 2000;105(2 Pt 1):333–8.

    Article  PubMed  CAS  Google Scholar 

  140. Lee EB, Zhao J, Kim JY, Xiong M, Song YW. Evidence of potential interaction of chemokine genes in susceptibility to systemic sclerosis. Arthritis Rheum. 2007;56(7):2443–8.

    Article  PubMed  CAS  Google Scholar 

  141. Patel VP, Kreider BL, Li Y, et al. Molecular and functional characterization of two novel human C–C chemokines as inhibitors of two distinct classes of myeloid progenitors. J Exp Med. 1997;185(7):1163–72.

    Article  PubMed  CAS  Google Scholar 

  142. Yanaba K, Yoshizaki A, Muroi E, et al. Serum CCL23 levels are increased in patients with systemic sclerosis. Arch Dermatol Res. 2011;303(1):29–34.

    Article  PubMed  CAS  Google Scholar 

  143. Novak H, Muller A, Harrer N, Gunther C, Carballido JM, Woisetschlager M. CCL23 expression is induced by IL-4 in a STAT6-dependent fashion. J Immunol. 2007;178(7):4335–41.

    PubMed  CAS  Google Scholar 

  144. Yogo Y, Fujishima S, Inoue T, et al. Macrophage derived chemokine (CCL22), thymus and activation-regulated chemokine (CCL17), and CCR4 in idiopathic pulmonary fibrosis. Respir Res. 2009;10:80.

    Article  PubMed  CAS  Google Scholar 

  145. Shinoda H, Tasaka S, Fujishima S, et al. Elevated CC chemokine level in bronchoalveolar lavage fluid is predictive of a poor outcome of idiopathic pulmonary fibrosis. Respiration. 2009;78(3):285–92.

    Article  PubMed  CAS  Google Scholar 

  146. Pignatti P, Brunetti G, Moretto D, et al. Role of the chemokine receptors CXCR3 and CCR4 in human pulmonary fibrosis. Am J Respir Crit Care Med. 2006;173(3):310–7.

    Article  PubMed  CAS  Google Scholar 

  147. Pechkovsky DV, Prasse A, Kollert F, et al. Alternatively activated alveolar macrophages in pulmonary fibrosis-mediator production and intracellular signal transduction. Clin Immunol. 2010;137(1):89–101.

    Article  PubMed  CAS  Google Scholar 

  148. Trujillo G, O’Connor EC, Kunkel SL, Hogaboam CM. A novel mechanism for CCR4 in the regulation of macrophage activation in bleomycin-induced pulmonary fibrosis. Am J Pathol. 2008;172(5):1209–21.

    Article  PubMed  CAS  Google Scholar 

  149. Belperio JA, Dy M, Murray L, et al. The role of the Th2 CC chemokine ligand CCL17 in pulmonary fibrosis. J Immunol. 2004;173(7):4692–8.

    PubMed  CAS  Google Scholar 

  150. Campbell JJ, Haraldsen G, Pan J, et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature. 1999;400(6746):776–80.

    Article  PubMed  CAS  Google Scholar 

  151. Reiss Y, Proudfoot AE, Power CA, Campbell JJ, Butcher EC. CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med. 2001;194(10):1541–7.

    Article  PubMed  CAS  Google Scholar 

  152. Fujii H, Shimada Y, Hasegawa M, Takehara K, Sato S. Serum levels of a Th1 chemoattractant IP-10 and Th2 chemoattractants, TARC and MDC, are elevated in patients with systemic sclerosis. J Dermatol Sci. 2004;35(1):43–51.

    Article  PubMed  CAS  Google Scholar 

  153. Hayakawa I, Hasegawa M, Matsushita T, et al. Increased cutaneous T-cell-attracting chemokine levels in sera from patients with systemic sclerosis. Rheumatology (Oxford). 2005;44(7):873–8.

    Article  CAS  Google Scholar 

  154. Prasse A, Pechkovsky DV, Toews GB, et al. A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18. Am J Respir Crit Care Med. 2006;173(7):781–92.

    Article  PubMed  CAS  Google Scholar 

  155. Atamas SP, Luzina IG, Choi J, et al. Pulmonary and activation-regulated chemokine stimulates collagen production in lung fibroblasts. Am J Respir Cell Mol Biol. 2003;29(6):743–9.

    Article  PubMed  CAS  Google Scholar 

  156. Luzina IG, Todd NW, Nacu N, et al. Regulation of pulmonary inflammation and fibrosis through expression of integrins alphaVbeta3 and alphaVbeta5 on pulmonary T lymphocytes. Arthritis Rheum. 2009;60(5):1530–9.

    Article  PubMed  Google Scholar 

  157. Prasse A, Pechkovsky DV, Toews GB, et al. CCL18 as an indicator of pulmonary fibrotic activity in idiopathic interstitial pneumonias and systemic sclerosis. Arthritis Rheum. 2007;56(5):1685–93.

    Article  PubMed  CAS  Google Scholar 

  158. van Lieshout AW, Vonk MC, Bredie SJ, et al. Enhanced interleukin-10 production by dendritic cells upon stimulation with toll-like receptor 4 agonists in systemic sclerosis that is possibly implicated in CCL18 secretion. Scand J Rheumatol. 2009;38(4):282–90.

    Article  PubMed  CAS  Google Scholar 

  159. Kodera M, Hasegawa M, Komura K, Yanaba K, Takehara K, Sato S. Serum pulmonary and activation-regulated chemokine/CCL18 levels in patients with systemic sclerosis: a sensitive indicator of active pulmonary fibrosis. Arthritis Rheum. 2005;52(9):2889–96.

    Article  PubMed  CAS  Google Scholar 

  160. Chang MS, McNinch J, Basu R, Simonet S. Cloning and characterization of the human neutrophil-activating peptide (ENA-78) gene. J Biol Chem. 1994;269(41):25277–82.

    PubMed  CAS  Google Scholar 

  161. Renzoni E, Lympany P, Sestini P, et al. Distribution of novel polymorphisms of the interleukin-8 and CXC receptor 1 and 2 genes in systemic sclerosis and cryptogenic fibrosing alveolitis. Arthritis Rheum. 2000;43(7):1633–40.

    Article  PubMed  CAS  Google Scholar 

  162. Koch AE, Kronfeld-Harrington LB, Szekanecz Z, et al. In situ expression of cytokines and cellular adhesion molecules in the skin of patients with systemic sclerosis. their role in early and late disease. Pathobiology. 1993;61(5–6):239–46.

    Article  PubMed  CAS  Google Scholar 

  163. Furuse S, Fujii H, Kaburagi Y, et al. Serum concentrations of the CXC chemokines interleukin 8 and growth-regulated oncogene-alpha are elevated in patients with systemic sclerosis. J Rheumatol. 2003;30(7):1524–8.

    PubMed  CAS  Google Scholar 

  164. Meloni F, Caporali R, Marone Bianco A, et al. Cytokine profile of bronchoalveolar lavage in systemic sclerosis with interstitial lung disease: comparison with usual interstitial pneumonia. Ann Rheum Dis. 2004;63(7):892–4.

    Article  PubMed  CAS  Google Scholar 

  165. Pantelidis P, Southcott AM, Black CM, Du Bois RM. Up-regulation of IL-8 secretion by alveolar macrophages from patients with fibrosing alveolitis: a subpopulation analysis. Clin Exp Immunol. 1997;108(1):95–104.

    Article  PubMed  CAS  Google Scholar 

  166. Ludwicka-Bradley A, Tourkina E, Suzuki S, et al. Thrombin upregulates interleukin-8 in lung fibroblasts via cleavage of proteolytically activated receptor-I and protein kinase C-gamma activation. Am J Respir Cell Mol Biol. 2000;22(2):235–43.

    PubMed  CAS  Google Scholar 

  167. Silver RM, Metcalf JF, Stanley JH, LeRoy EC. Interstitial lung disease in scleroderma. analysis by bronchoalveolar lavage. Arthritis Rheum. 1984;27(11):1254–62.

    Article  PubMed  CAS  Google Scholar 

  168. Fineschi S, Goffin L, Rezzonico R, et al. Antifibroblast antibodies in systemic sclerosis induce fibroblasts to produce profibrotic chemokines, with partial exploitation of toll-like receptor 4. Arthritis Rheum. 2008;58(12):3913–23.

    Article  PubMed  CAS  Google Scholar 

  169. Macko RF, Gelber AC, Young BA, et al. Increased circulating concentrations of the counteradhesive proteins SPARC and thrombospondin-1 in systemic sclerosis (scleroderma). relationship to platelet and endothelial cell activation. J Rheumatol. 2002;29(12):2565–70.

    PubMed  CAS  Google Scholar 

  170. Postlethwaite AE, Chiang TM. Platelet contributions to the pathogenesis of systemic sclerosis. Curr Opin Rheumatol. 2007;19(6):574–9.

    Article  PubMed  Google Scholar 

  171. Kowal-Bielecka O, Kowal K, Lewszuk A, Bodzenta-Lukaszyk A, Walecki J, Sierakowski S. Beta thromboglobulin and platelet factor 4 in bronchoalveolar lavage fluid of patients with systemic sclerosis. Ann Rheum Dis. 2005;64(3):484–6.

    Article  PubMed  CAS  Google Scholar 

  172. Nomura S, Inami N, Ozaki Y, Kagawa H, Fukuhara S. Significance of microparticles in progressive systemic sclerosis with interstitial pneumonia. Platelets. 2008;19(3):192–8.

    Article  PubMed  CAS  Google Scholar 

  173. Ruth JH, Rottman JB, Katschke Jr KJ, et al. Selective lymphocyte chemokine receptor expression in the rheumatoid joint. Arthritis Rheum. 2001;44(12):2750–60.

    Article  PubMed  CAS  Google Scholar 

  174. Balashov KE, Rottman JB, Weiner HL, Hancock WW. CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci U S A. 1999;96(12):6873–8.

    Article  PubMed  CAS  Google Scholar 

  175. Sorensen TL, Tani M, Jensen J, et al. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest. 1999;103(6):807–15.

    Article  PubMed  CAS  Google Scholar 

  176. Hancock WW, Lu B, Gao W, et al. Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J Exp Med. 2000;192(10):1515–20.

    Article  PubMed  CAS  Google Scholar 

  177. Belperio JA, Keane MP, Burdick MD, et al. Role of CXCL9/CXCR3 chemokine biology during pathogenesis of acute lung allograft rejection. J Immunol. 2003;171(9):4844–52.

    PubMed  CAS  Google Scholar 

  178. Jiang D, Liang J, Hodge J, et al. Regulation of pulmonary fibrosis by chemokine receptor CXCR3. J Clin Invest. 2004;114(2):291–9.

    PubMed  CAS  Google Scholar 

  179. Keane MP, Belperio JA, Arenberg DA, et al. IFN-gamma-inducible protein-10 attenuates bleomycin-induced pulmonary fibrosis via inhibition of angiogenesis. J Immunol. 1999;163(10):5686–92.

    PubMed  CAS  Google Scholar 

  180. Hasegawa M, Fujimoto M, Matsushita T, Hamaguchi Y, Takehara K, Sato S. Serum chemokine and cytokine levels as indicators of disease activity in patients with systemic sclerosis. Clin Rheumatol. 2011;30(2):231–7.

    Article  PubMed  Google Scholar 

  181. Zeremski M, Dimova R, Brown Q, Jacobson IM, Markatou M, Talal AH. Peripheral CXCR3-associated chemokines as biomarkers of fibrosis in chronic hepatitis C virus infection. J Infect Dis. 2009;200(11):1774–80.

    Article  PubMed  CAS  Google Scholar 

  182. Ho J, Rush DN, Gibson IW, et al. Early urinary CCL2 is associated with the later development of interstitial fibrosis and tubular atrophy in renal allografts. Transplantation. 2010;90(4):394–400.

    Article  PubMed  CAS  Google Scholar 

  183. Eloranta ML, Franck-Larsson K, Lovgren T, et al. Type I interferon system activation and association with disease manifestations in systemic sclerosis. Ann Rheum Dis. 2010;69(7):1396–402.

    Article  PubMed  CAS  Google Scholar 

  184. Rabquer BJ, Tsou PS, Hou Y, et al. Dysregulated expression of MIG/CXCL9, IP-10/CXCL10 and CXCL16 and their receptors in systemic sclerosis. Arthritis Res Ther. 2011;13(1):R18.

    Article  PubMed  CAS  Google Scholar 

  185. Murdoch C. CXCR4: Chemokine receptor extraordinaire. Immunol Rev. 2000;177:175–84.

    Article  PubMed  CAS  Google Scholar 

  186. Phillips RJ, Burdick MD, Hong K, et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest. 2004;114(3):438–46.

    PubMed  CAS  Google Scholar 

  187. Mehrad B, Burdick MD, Zisman DA, Keane MP, Belperio JA, Strieter RM. Circulating peripheral blood fibrocytes in human fibrotic interstitial lung disease. Biochem Biophys Res Commun. 2007;353(1):104–8.

    Article  PubMed  CAS  Google Scholar 

  188. Moeller A, Gilpin SE, Ask K, et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2009;179(7):588–94.

    Article  PubMed  Google Scholar 

  189. Strieter RM, Keeley EC, Hughes MA, Burdick MD, Mehrad B. The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis. J Leukoc Biol. 2009;86(5):1111–8.

    Article  PubMed  CAS  Google Scholar 

  190. Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood. 1998;91(12):4523–30.

    PubMed  CAS  Google Scholar 

  191. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.

    Article  PubMed  CAS  Google Scholar 

  192. Cipriani P, Franca Milia A, Liakouli V, et al. Differential expression of stromal cell-derived factor 1 and its receptor CXCR4 in the skin and endothelial cells of systemic sclerosis patients: pathogenetic implications. Arthritis Rheum. 2006;54(9):3022–33.

    Article  PubMed  CAS  Google Scholar 

  193. Manetti M, Liakouli V, Fatini C, et al. Association between a stromal cell-derived factor 1 (SDF-1/CXCL12) gene polymorphism and microvascular disease in systemic sclerosis. Ann Rheum Dis. 2009;68(3):408–11.

    Article  PubMed  CAS  Google Scholar 

  194. Abel S, Hundhausen C, Mentlein R, et al. The transmembrane CXC-chemokine ligand 16 is induced by IFN-gamma and TNF-alpha and shed by the activity of the disintegrin-like metalloproteinase ADAM10. J Immunol. 2004;172(10):6362–72.

    PubMed  CAS  Google Scholar 

  195. Yanaba K, Muroi E, Yoshizaki A, et al. Serum CXCL16 concentrations correlate with the extent of skin sclerosis in patients with systemic sclerosis. J Rheumatol. 2009;36(9):1917–23.

    Article  PubMed  CAS  Google Scholar 

  196. Umehara H, Bloom ET, Okazaki T, Nagano Y, Yoshie O, Imai T. Fractalkine in vascular biology: from basic research to clinical disease. Arterioscler Thromb Vasc Biol. 2004;24(1):34–40.

    Article  PubMed  CAS  Google Scholar 

  197. Fraticelli P, Sironi M, Bianchi G, et al. Fractalkine (CX3CL1) as an amplification circuit of polarized Th1 responses. J Clin Invest. 2001;107(9):1173–81.

    Article  PubMed  CAS  Google Scholar 

  198. Hasegawa M, Sato S, Echigo T, Hamaguchi Y, Yasui M, Takehara K. Up regulated expression of fractalkine/CX3CL1 and CX3CR1 in patients with systemic sclerosis. Ann Rheum Dis. 2005;64(1):21–8.

    Article  PubMed  CAS  Google Scholar 

  199. Sicinska J, Gorska E, Cicha M, et al. Increased serum fractalkine in systemic sclerosis. down-regulation by prostaglandin E1. Clin Exp Rheumatol. 2008;26(4):527–33.

    PubMed  CAS  Google Scholar 

  200. Balabanian K, Foussat A, Dorfmuller P, et al. CX(3)C chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2002;165(10):1419–25.

    Article  PubMed  Google Scholar 

  201. Marasini B, Cossutta R, Selmi C, et al. Polymorphism of the fractalkine receptor CX3CR1 and systemic sclerosis-associated pulmonary arterial hypertension. Clin Dev Immunol. 2005;12(4):275–9.

    Article  PubMed  CAS  Google Scholar 

  202. Horikawa M, Hasegawa M, Komura K, et al. Abnormal natural killer cell function in systemic sclerosis: altered cytokine production and defective killing activity. J Invest Dermatol. 2005;125(4):731–7.

    Article  PubMed  CAS  Google Scholar 

  203. Holcombe RF, Baethge BA, Wolf RE, Betzing KW, Stewart RM. Natural killer cells and gamma delta T cells in scleroderma: relationship to disease duration and anti-scl-70 antibodies. Ann Rheum Dis. 1995;54(1):69–72.

    Article  PubMed  CAS  Google Scholar 

  204. Riccieri V, Spadaro A, Parisi G, et al. Down-regulation of natural killer cells and of gamma/delta T cells in systemic lupus erythematosus. does it correlate to autoimmunity and to laboratory indices of disease activity? Lupus. 2000;9(5):333–7.

    Article  PubMed  CAS  Google Scholar 

  205. Frieri M, Angadi C, Paolano A, et al. Altered T cell subpopulations and lymphocytes expressing natural killer cell phenotypes in patients with progressive systemic sclerosis. J Allergy Clin Immunol. 1991;87(4):773–9.

    Article  PubMed  CAS  Google Scholar 

  206. Miller EB, Hiserodt JC, Hunt LE, Steen VD, Medsger Jr TA. Reduced natural killer cell activity in patients with systemic sclerosis. correlation with clinical disease type. Arthritis Rheum. 1988;31(12):1515–23.

    Article  PubMed  CAS  Google Scholar 

  207. Kantor TV, Whiteside TL, Friberg D, Buckingham RB, Medsger Jr TA. Lymphokine-activated killer cell and natural killer cell activities in patients with systemic sclerosis. Arthritis Rheum. 1992;35(6):694–9.

    Article  PubMed  CAS  Google Scholar 

  208. Wright JK, Hughes P, Rowell NR. Spontaneous lymphocyte-mediated (NK cell) cytotoxicity in systemic sclerosis: a comparison with antibody-dependent lymphocyte (K cell) cytotoxicity. Ann Rheum Dis. 1982;41(4):409–13.

    Article  PubMed  CAS  Google Scholar 

  209. Novak J, Lehuen A. Mechanism of regulation of autoimmunity by iNKT cells. Cytokine. 2011;53(3):263–70.

    Article  PubMed  CAS  Google Scholar 

  210. Kojo S, Adachi Y, Keino H, Taniguchi M, Sumida T. Dysfunction of T cell receptor AV24AJ18+, BV11+ double-negative regulatory natural killer T cells in autoimmune diseases. Arthritis Rheum. 2001;44(5):1127–38.

    Article  PubMed  CAS  Google Scholar 

  211. van der Vliet HJ, von Blomberg BM, Nishi N, et al. Circulating V(alpha24+) Vbeta11+ NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin Immunol. 2001;100(2):144–8.

    Article  PubMed  Google Scholar 

  212. Illes Z, Kondo T, Newcombe J, Oka N, Tabira T, Yamamura T. Differential expression of NK T cell V alpha 24 J alpha Q invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. J Immunol. 2000;164(8):4375–81.

    PubMed  CAS  Google Scholar 

  213. Liu YJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell. 2001;106(3):259–62.

    Article  PubMed  CAS  Google Scholar 

  214. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.

    Article  PubMed  CAS  Google Scholar 

  215. Siegal FP, Kadowaki N, Shodell M, et al. The nature of the principal type 1 interferon-producing cells in human blood. Science. 1999;284(5421):1835–7.

    Article  PubMed  CAS  Google Scholar 

  216. Cella M, Jarrossay D, Facchetti F, et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med. 1999;5(8):919–23.

    Article  PubMed  CAS  Google Scholar 

  217. Kadowaki N, Antonenko S, Lau JY, Liu YJ. Natural interferon alpha/beta-producing cells link innate and adaptive immunity. J Exp Med. 2000;192(2):219–26.

    Article  PubMed  CAS  Google Scholar 

  218. de Saint-Vis B, Fugier-Vivier I, Massacrier C, et al. The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J Immunol. 1998;160(4):1666–76.

    PubMed  Google Scholar 

  219. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.

    Article  PubMed  CAS  Google Scholar 

  220. van Bon L, Popa C, Huijbens R, et al. Distinct evolution of TLR-mediated dendritic cell cytokine secretion in patients with limited and diffuse cutaneous systemic sclerosis. Ann Rheum Dis. 2010;69(8):1539–47.

    Article  PubMed  CAS  Google Scholar 

  221. Ziegler SF, Artis D. Sensing the outside world: TSLP regulates barrier immunity. Nat Immunol. 2010;11(4):289–93.

    Article  PubMed  CAS  Google Scholar 

  222. Ito T, Wang YH, Duramad O, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med. 2005;202(9):1213–23.

    Article  PubMed  CAS  Google Scholar 

  223. Gourh P, Arnett FC, Tan FK, et al. Association of TNFSF4 (OX40L) polymorphisms with susceptibility to systemic sclerosis. Ann Rheum Dis. 2010;69(3):550–5.

    Article  PubMed  CAS  Google Scholar 

  224. Komura K, Yoshizaki A, Kodera M, et al. Increased serum soluble OX40 in patients with systemic sclerosis. J Rheumatol. 2008;35(12):2359–62.

    Article  PubMed  CAS  Google Scholar 

  225. Duan H, Fleming J, Pritchard DK, et al. Combined analysis of monocyte and lymphocyte messenger RNA expression with serum protein profiles in patients with scleroderma. Arthritis Rheum. 2008;58(5):1465–74.

    Article  PubMed  CAS  Google Scholar 

  226. Tan FK, Zhou X, Mayes MD, et al. Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology (Oxford). 2006;45(6):694–702.

    Article  CAS  Google Scholar 

  227. Ishikawa O, Ishikawa H. Macrophage infiltration in the skin of patients with systemic sclerosis. J Rheumatol. 1992;19(8):1202–6.

    PubMed  CAS  Google Scholar 

  228. Kraling BM, Maul GG, Jimenez SA. Mononuclear cellular infiltrates in clinically involved skin from patients with systemic sclerosis of recent onset predominantly consist of monocytes/macrophages. Pathobiology. 1995;63(1):48–56.

    Article  PubMed  CAS  Google Scholar 

  229. Taylor ML, Noble PW, White B, Wise R, Liu MC, Bochner BS. Extensive surface phenotyping of alveolar macrophages in interstitial lung disease. Clin Immunol. 2000;94(1):33–41.

    Article  PubMed  CAS  Google Scholar 

  230. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23–35.

    Article  PubMed  CAS  Google Scholar 

  231. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.

    Article  PubMed  CAS  Google Scholar 

  232. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest. 1998;101(4):890–8.

    Article  PubMed  CAS  Google Scholar 

  233. Song E, Ouyang N, Horbelt M, Antus B, Wang M, Exton MS. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol. 2000;204(1):19–28.

    Article  PubMed  CAS  Google Scholar 

  234. Higashi-Kuwata N, Jinnin M, Makino T, et al. Characterization of monocyte/macrophage subsets in the skin and peripheral blood derived from patients with systemic sclerosis. Arthritis Res Ther. 2010;12(4):R128.

    Article  PubMed  CAS  Google Scholar 

  235. Mathai SK, Gulati M, Peng X, et al. Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype. Lab Invest. 2010;90(6):812–23.

    Article  PubMed  CAS  Google Scholar 

  236. York MR, Nagai T, Mangini AJ, Lemaire R, van Seventer JM, Lafyatis R. A macrophage marker, siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and toll-like receptor agonists. Arthritis Rheum. 2007;56(3):1010–20.

    Article  PubMed  CAS  Google Scholar 

  237. Kahaleh MB, LeRoy EC. Interleukin-2 in scleroderma: Correlation of serum level with extent of skin involvement and disease duration. Ann Intern Med. 1989;110(6):446–50.

    PubMed  CAS  Google Scholar 

  238. Clements PJ, Peter JB, Agopian MS, Telian NS, Furst DE. Elevated serum levels of soluble interleukin 2 receptor, interleukin 2 and neopterin in diffuse and limited scleroderma: effects of chlorambucil. J Rheumatol. 1990;17(7):908–10.

    PubMed  CAS  Google Scholar 

  239. Famularo G, Procopio A, Giacomelli R, et al. Soluble interleukin-2 receptor, interleukin-2 and interleukin-4 in sera and supernatants from patients with progressive systemic sclerosis. Clin Exp Immunol. 1990;81(3):368–72.

    Article  PubMed  CAS  Google Scholar 

  240. Hasegawa M, Fujimoto M, Kikuchi K, Takehara K. Elevated serum levels of interleukin 4 (IL-4), IL-10, and IL-13 in patients with systemic sclerosis. J Rheumatol. 1997;24(2):328–32.

    PubMed  CAS  Google Scholar 

  241. Tsuji-Yamada J, Nakazawa M, Minami M, Sasaki T. Increased frequency of interleukin 4 producing CD4+ and CD8+ cells in peripheral blood from patients with systemic sclerosis. J Rheumatol. 2001;28(6):1252–8.

    PubMed  CAS  Google Scholar 

  242. Fertin C, Nicolas JF, Gillery P, Kalis B, Banchereau J, Maquart FX. Interleukin-4 stimulates collagen synthesis by normal and scleroderma fibroblasts in dermal equivalents. Cell Mol Biol. 1991;37(8):823–9.

    PubMed  CAS  Google Scholar 

  243. Lee KS, Ro YJ, Ryoo YW, Kwon HJ, Song JY. Regulation of interleukin-4 on collagen gene expression by systemic sclerosis fibroblasts in culture. J Dermatol Sci. 1996;12(2):110–7.

    Article  PubMed  CAS  Google Scholar 

  244. Maurer B, Stanczyk J, Jungel A, et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 2010;62(6):1733–43.

    Article  PubMed  CAS  Google Scholar 

  245. Reitamo S, Remitz A, Varga J, et al. Demonstration of interleukin 8 and autoantibodies to interleukin 8 in the serum of patients with systemic sclerosis and related disorders. Arch Dermatol. 1993;129(2):189–93.

    Article  PubMed  CAS  Google Scholar 

  246. Southcott AM, Jones KP, Li D, et al. Interleukin-8. differential expression in lone fibrosing alveolitis and systemic sclerosis. Am J Respir Crit Care Med. 1995;151(5):1604–12.

    PubMed  CAS  Google Scholar 

  247. Meloni F, Caporali R, Marone Bianco A, et al. BAL cytokine profile in different interstitial lung diseases: a focus on systemic sclerosis. Sarcoidosis Vasc Diffuse Lung Dis. 2004;21(2):111–8.

    PubMed  Google Scholar 

  248. van den Brule S, Heymans J, Havaux X, et al. Profibrotic effect of IL-9 overexpression in a model of airway remodeling. Am J Respir Cell Mol Biol. 2007;37(2):202–9.

    Article  PubMed  Google Scholar 

  249. Arras M, Louahed J, Simoen V, et al. B lymphocytes are critical for lung fibrosis control and prostaglandin E2 regulation in IL-9 transgenic mice. Am J Respir Cell Mol Biol. 2006;34(5):573–80.

    Article  PubMed  CAS  Google Scholar 

  250. Zhu Z, Lee CG, Zheng T, et al. Airway inflammation and remodeling in asthma. lessons from interleukin 11 and interleukin 13 transgenic mice. Am J Respir Crit Care Med. 2001;164(10 Pt 2):S67–70.

    PubMed  CAS  Google Scholar 

  251. Wuttge DM, Wildt M, Geborek P, Wollheim FA, Scheja A, Akesson A. Serum IL-15 in patients with early systemic sclerosis: a potential novel marker of lung disease. Arthritis Res Ther. 2007;9(5):R85.

    Article  PubMed  CAS  Google Scholar 

  252. Kim HJ, Song SB, Choi JM, et al. IL-18 downregulates collagen production in human dermal fibroblasts via the ERK pathway. J Invest Dermatol. 2010;130(3):706–15.

    Article  PubMed  CAS  Google Scholar 

  253. Distler JH, Jungel A, Kowal-Bielecka O, et al. Expression of interleukin-21 receptor in epidermis from patients with systemic sclerosis. Arthritis Rheum. 2005;52(3):856–64.

    Article  PubMed  CAS  Google Scholar 

  254. Simonian PL, Wehrmann F, Roark CL, Born WK, O’Brien RL, Fontenot AP. Gammadelta T cells protect against lung fibrosis via IL-22. J Exp Med. 2010;207(10):2239–53.

    Article  PubMed  CAS  Google Scholar 

  255. Yoshizaki A, Yanaba K, Iwata Y, et al. Elevated serum interleukin-27 levels in patients with systemic sclerosis: association with T cell, B cell and fibroblast activation. Ann Rheum Dis. 2011;70(1):194–200.

    Article  PubMed  CAS  Google Scholar 

  256. Rankin AL, Mumm JB, Murphy E, et al. IL-33 induces IL-13-dependent cutaneous fibrosis. J Immunol. 2010;184(3):1526–35.

    Article  PubMed  CAS  Google Scholar 

  257. Del Galdo F, Maul GG, Jimenez SA, Artlett CM. Expression of allograft inflammatory factor 1 in tissues from patients with systemic sclerosis and in vitro differential expression of its isoforms in response to transforming growth factor beta. Arthritis Rheum. 2006;54(8):2616–25.

    Article  PubMed  CAS  Google Scholar 

  258. Matsushita T, Fujimoto M, Hasegawa M, et al. BAFF antagonist attenuates the development of skin fibrosis in tight-skin mice. J Invest Dermatol. 2007;127(12):2772–80.

    PubMed  CAS  Google Scholar 

  259. Iwasaki T, Imado T, Kitano S, Sano H. Hepatocyte growth factor ameliorates dermal sclerosis in the tight-skin mouse model of scleroderma. Arthritis Res Ther. 2006;8(6):R161.

    Article  PubMed  CAS  Google Scholar 

  260. Kim D, Peck A, Santer D, et al. Induction of interferon-alpha by scleroderma sera containing autoantibodies to topoisomerase I: association of higher interferon-alpha activity with lung fibrosis. Arthritis Rheum. 2008;58(7):2163–73.

    Article  PubMed  CAS  Google Scholar 

  261. Gillery P, Serpier H, Polette M, et al. Gamma-interferon inhibits extracellular matrix synthesis and remodeling in collagen lattice cultures of normal and scleroderma skin fibroblasts. Eur J Cell Biol. 1992;57(2):244–53.

    PubMed  CAS  Google Scholar 

  262. Majumdar S, Li D, Ansari T, et al. Different cytokine profiles in cryptogenic fibrosing alveolitis and fibrosing alveolitis associated with systemic sclerosis: a quantitative study of open lung biopsies. Eur Respir J. 1999;14(2):251–7.

    Article  PubMed  CAS  Google Scholar 

  263. Valentini G, Romano MF, Naclerio C, et al. Increased expression of CD40 ligand in activated CD4+ T lymphocytes of systemic sclerosis patients. J Autoimmun. 2000;15(1):61–6.

    Article  PubMed  CAS  Google Scholar 

  264. Gourh P, Arnett FC, Assassi S, et al. Plasma cytokine profiles in systemic sclerosis: associations with autoantibody subsets and clinical manifestations. Arthritis Res Ther. 2009;11(5):R147.

    Article  PubMed  CAS  Google Scholar 

  265. Yamamoto T, Eckes B, Hartmann K, Krieg T. Expression of monocyte chemoattractant protein-1 in the lesional skin of systemic sclerosis. J Dermatol Sci. 2001;26(2):133–9.

    Article  PubMed  CAS  Google Scholar 

  266. Kadono T, Kikuchi K, Ihn H, Takehara K, Tamaki K. Increased production of interleukin 6 and interleukin 8 in scleroderma fibroblasts. J Rheumatol. 1998;25(2):296–301.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Boin MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boin, F., Chizzolini, C. (2012). Immunological Mechanisms. In: Varga, J., Denton, C., Wigley, F. (eds) Scleroderma. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5774-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5774-0_15

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5773-3

  • Online ISBN: 978-1-4419-5774-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics