Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 670))

Abstract

Cell encapsulation has been proposed for the treatment of a wide variety of diseases since it allows for transplantation of cells in the absence of undesired immunosuppression. The technology has been proposed to be a solution for the treatment of diabetes since it potentially allows a mandatory minute-to-minute regulation of glucose levels without side-effects. Encapsulation is based on the principle that transplanted tissue is protected for the host immune system by a semipermeable capsule. Many different concepts of capsules have been tested. During the past two decades three major approaches of encapsulation have been studied. These include (i) intravascular macrocapsules, which are anastomosed to the vascular system as AV shunt, (ii) extravascular macrocapsules, which are mostly diffusion chambers transplanted at different sites and (iii) extravascular microcapsules transplanted in the peritoneal cavity. The advantages and pitfalls of the three approaches are discussed and compared in view of applicability in clinical islet transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993; 329:977–86.

    Google Scholar 

  2. Robertson RP, Davis C, Larsen J et al. Pancreas and islet transplantation for patients with diabetes. Diabetes Care 2000; 23:112–16.

    Article  CAS  PubMed  Google Scholar 

  3. Sutherland DE, Gruessner AC, Gruessner RW. Pancreas transplantation: a review. Transplant Proc 1998; 30:1940–1943.

    Article  CAS  PubMed  Google Scholar 

  4. Kronson JW, Gillingham KJ, Sutherland DE et al. Renal transplantation for type II diabetic patients compared with type I diabetic patients and patients over 50 years old: a single-center experience. Clin Transplant 2000; 14:226–34.

    Article  CAS  PubMed  Google Scholar 

  5. Shapiro AM, Lakey JR, Ryan EA et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343:230–238.

    Article  CAS  PubMed  Google Scholar 

  6. Ryan EA, Paty BW, Senior PA et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005; 54:2060–2069.

    Article  CAS  PubMed  Google Scholar 

  7. Ryan EA, Paty BW, Senior PA et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005; 54:2060–2069.

    Article  CAS  PubMed  Google Scholar 

  8. Ryan EA, Paty BW, Senior PA et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005; 54:2060–2069.

    Article  CAS  PubMed  Google Scholar 

  9. De Vos P, Faas MM, Strand B et al. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 2006; 27:5603–17.

    Article  PubMed  CAS  Google Scholar 

  10. Gangaram-Panday ST, Faas MM, De Vos P. Towards stem-cell therapy in the endocrine pancreas. Trends Mol Med 2007.

    Google Scholar 

  11. Bisceglie VV. Uber die antineoplastische Immunitat. Krebsforsch 1933; 40:141–58.

    Article  Google Scholar 

  12. Algire GH. An adaption of the transparant chamber technique to the mouse. J Natl Cancer Inst 1943; 4:1–11.

    Google Scholar 

  13. Hasse C, Zielke A, Klöck G et al. Isotransplantation of microencapsulated parathyroid tissue in rats. Experimental and Clinical Endocrinology and Diabetes 1997; 105:53–56.

    CAS  PubMed  Google Scholar 

  14. Hasse C, Klöck G, Schlosser A et al. Parathyroid allotransplantation without immunosuppression. Lancet 1997; 350:1296–97.

    Article  CAS  PubMed  Google Scholar 

  15. Liu HW, Ofosu FA, Chang PL. Expression of human factor IX by microencapsulated recombinant fibroblasts. Hum Gene Ther 1993; 4:291–301.

    Article  CAS  PubMed  Google Scholar 

  16. Koo J, Chang TSM. Secretion of erythropoietin from microencapsulated rat kidney cells. Int J Artif Organs 1993; 16:557–60.

    CAS  PubMed  Google Scholar 

  17. Chang PL, Shen N, Westcott AJ. Delivery of recombinant gene products with microencapsulated cells in vivo. Hum Gene Ther 1993; 4:433–40.

    Article  CAS  PubMed  Google Scholar 

  18. Cieslinski DA, Humes HD. Tissue engineering of a bioartificial kidney. Biotechnol Bioeng 1994; 43:678–81.

    Article  CAS  PubMed  Google Scholar 

  19. Uludag H, Sefton MV. Metabolic activity and proliferation of CHO cells in hydroxyethyl methacrylate-methyl methacrylate (HEMA-MMA) microcapsules. Cell Transplant 1993; 2:175–82.

    CAS  PubMed  Google Scholar 

  20. Colton CK. Implantable biohybrid artificial organs. Cell Transplantation 1995; 4:415–36.

    Article  CAS  PubMed  Google Scholar 

  21. Aebischer P, Goddard M, Signore AP et al. Functional recovery in hemiparkinsonian primates transplanted with polymer-encapsulated PC12 cells. Exp Neurol 1994; 126:151–58.

    Article  CAS  PubMed  Google Scholar 

  22. Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980; 210:908–10.

    Article  CAS  PubMed  Google Scholar 

  23. Knazek RA, Gullino PM, Kohler PO et al. Cell culture on artificial capillaries: an approach to tissue growth in vitro. Science 1972; 178:65–66.

    Article  CAS  PubMed  Google Scholar 

  24. Chick WL, Like AA, Lauris V. Beta cell culture on synthetic capillaries: an artificial endocrine pancreas. Science 1975; 187:847–49.

    Article  CAS  PubMed  Google Scholar 

  25. Chick WL, Like AA, Lauris V et al. A hybird artifical pancreas. Trans Am Soc Artif Intern Organs 1975; 21:8–15.

    CAS  PubMed  Google Scholar 

  26. Sun AM, Parisius W, Healy GM et al. The use, in diabetic rats and monkeys, of artificial capillary units containing cultured islets of Langerhans (artificial endocrine pancreas). Diabetes 1977; 26:1136–39.

    Article  CAS  PubMed  Google Scholar 

  27. Maki T, Lodge JP, Carretta M et al. Treatment of severe diabetes mellitus for more than one year using a vascularized hybrid artificial pancreas. Transplantation 1993; 55:713–17.

    Article  CAS  PubMed  Google Scholar 

  28. Colton CK, Avgoustiniatos ES. Bioengineering in development of the hybrid artificial pancreas. J Biomech Eng 1991; 113:152–70.

    Article  CAS  PubMed  Google Scholar 

  29. Lanza RP, Borland KM, Lodge P et al. Pancreatic islet transplantation using membrane diffusion chambers. Transplant Proc 1992; 24:2935–36.

    CAS  PubMed  Google Scholar 

  30. Galletti PM, Trudell LA, Panol G et al. Feasibility of small bore AV shunts for hybrid artificial organs in nonheparinized beagle dogs. Trans Am Soc Artif Intern Organs 1981; 27:185–87.

    CAS  PubMed  Google Scholar 

  31. Maki T, Mullon CJ, Solomon BA et al. Novel delivery of pancreatic islet cells to treat insulin-dependent diabetes mellitus. Clin Pharmacokinet 1995; 28:471–82.

    Article  CAS  PubMed  Google Scholar 

  32. Maki T, O’Neil JJ, Porter J et al. Long-term function of porcine islets in xenogeneic hosts. Transplant Proc 1996; 28:807.

    CAS  PubMed  Google Scholar 

  33. Maki T, Otsu I, O’Neil JJ et al. Treatment of diabetes by xenogeneic islets without immunosuppression-Use of a vascularized bioartificial pancreas. Diabetes 1996; 45:342–47.

    Article  CAS  PubMed  Google Scholar 

  34. Lanza RP, Chick WL. Transplantation of encapsulated cells and tissues. Surgery 1997; 121:1–9.

    Article  CAS  PubMed  Google Scholar 

  35. Lanza RP, Chick WL. Immunoisolation: At a turning point Immunology Today 1997; 18:135–39.

    CAS  Google Scholar 

  36. Lanza RP, Lodge P, Borland KM et al. Transplantation of islet allografts using a diffusion-based biohybrid artificial pancreas: long-term studies in diabetic, pancreatectomized dogs. Transplant Proc 1993; 25:978–80.

    CAS  PubMed  Google Scholar 

  37. Lanza RP, Sullivan SJ, Chick WL. Perspectives in diabetes. Islet transplantation with immunoisolation. Diabetes 1992; 41:1503–10.

    Article  CAS  PubMed  Google Scholar 

  38. Krause TJ, Robertson FM, Liesch JB et al. Differential production of IL-1 on the surface of biomaterials. Arch Surg 1990; 125:1158–60.

    CAS  PubMed  Google Scholar 

  39. Sandler S, Eizirik DL, Sternesjo J et al. Role of cytokines in regulation of pancreatic B-cell function. Biochem Soc Trans 1994; 22:26–30.

    CAS  PubMed  Google Scholar 

  40. Cetkovic Cvrlje M, Eizirik DL. TNF-alpha and IFN-gamma potentiate the deleterious effects of IL-1 beta on mouse pancreatic islets mainly via generation of nitric oxide. Cytokine 1994; 6:399–406.

    Article  CAS  PubMed  Google Scholar 

  41. Remes A, Williams DF. Immune response in biocompatibility. Biomaterials 1992; 13:731–43.

    Article  CAS  PubMed  Google Scholar 

  42. Hunt JA, Flanagan BF, McLaughlin PJ et al. Effect of biomaterial surface charge on the inflammatory response: evaluation of cellular infiltration and TNF alpha production. J Biomed Mater Res 1996; 31:139–44.

    Article  CAS  PubMed  Google Scholar 

  43. Anderson JM, Langone JJ. Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems. J Controlled Release 1999; 57:107–13.

    Article  CAS  Google Scholar 

  44. Scharp DW, Mason NS, Sparks RE. Islet immuno-isolation: the use of hybrid artificial organs to prevent islet tissue rejection World. J Surg 1984; 8:221–29.

    CAS  Google Scholar 

  45. Archer J, Kaye R, Mutter G. Control of streptozotocin diabetes in Chinese hamsters by cultured mouse islet cells without immunosuppression: a preliminary report. J Surg Res 1980; 28:77–85.

    Article  CAS  PubMed  Google Scholar 

  46. Loudovaris T, Jacobs S, Young S et al. Correction of diabetic nod mice with insulinomas implanted within Baxter immunoisolation devices. J Mol Med 1999; 77:219–22.

    Article  CAS  PubMed  Google Scholar 

  47. Lanza RP, Beyer AM, Chick WL. Xenogeneic humoral responses to islets transplanted in biohybrid diffusion chambers. Transplantation 1994; 57:1371–75.

    Article  CAS  PubMed  Google Scholar 

  48. Jain K, Asina S, Yang H et al. Glucose control and long-term survival in biobreeding/Worcester rats after intraperitoneal implantation of hydrophilic macrobeads containing porcine islets without immunosuppression. Transplantation 1999; 68:1693–700.

    Article  CAS  PubMed  Google Scholar 

  49. Lacy PE, Hegre OD, Gerasimidi Vazeou A et al. Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science 1991; 254:1782–84.

    Article  CAS  PubMed  Google Scholar 

  50. Juang JH, Bonner-Weir S, Vacanti JP et al. Outcome of subcutaneous islet transplantation improved by a polymer device. Transplant Proc 1995; 27:3215–16.

    CAS  PubMed  Google Scholar 

  51. Juang JH, Bonner-Weir S, Wu YJ et al. Beneficial influence of glycemic control upon the growth and function of transplanted islets. Diabetes 1994; 43:1334–39.

    Article  CAS  PubMed  Google Scholar 

  52. Scharp DW, Swanson CJ, Olack BJ et al. Protection of encapsulated human islets implanted without immunosuppression in patients with type I or type II diabetes and in nondiabetic control subjects. Diabetes 1994; 43:1167–70.

    Article  CAS  PubMed  Google Scholar 

  53. Suzuki K, Bonner-Weir S, Trivedi N et al. Function and survival of macroencapsulated syngeneic islets transplanted into streptozocin-diabetic mice. Transplantation 1998; 66:21–28.

    Article  CAS  PubMed  Google Scholar 

  54. Tatarkiewicz K, Hollister-Lock J, Quickel RR et al. Reversal of hyperglycemia in mice after subcutaneous transplantation of macroencapsulated islets. Transplantation 1999; 67:665–71.

    Article  CAS  PubMed  Google Scholar 

  55. Siebers U, Zekorn T, Bretzel RG et al. Histocompatibility of semipermeable membranes for implantable diffusion devices (bioartificial pancreas). Transplant Proc 1990; 22:834–35.

    CAS  PubMed  Google Scholar 

  56. Woodward SC. How fibroblasts and giant cells encapsulate implants: considerations in design of glucose sensors. Diabetes Care 1982; 5:278–81.

    Article  CAS  PubMed  Google Scholar 

  57. Shoichet MS, Winn SR, Athavale S et al. Poly(ethylene oxide)-grafted thermoplastic membranes for use as cellular hybrid bio-artificial organs in the central nervous system. Biotech Bioeng 1994; 43:563–72.

    Article  CAS  Google Scholar 

  58. De Vos P, Van Schilfgaarde R. Biocompatibility Issues. In: Kühtreiber WM, Lanza RP, Chick WL, eds. Cell encapsulation technology and therapeutics. Boston: Birkhäuser, 1999:63–79.

    Google Scholar 

  59. De Vos P, Tatarkiewicz K. Considerations for successful transplantation of encapsulated pancreatic islets. Diabetologia 2002; 45:159–73.

    Article  PubMed  Google Scholar 

  60. Lhommeau C, Toillon S, Pith T et al. Polyamide 4,6 membranes for the encapsulation of Langerhans islets: preparation, physico-chemical properties and biocompatibility studies. J Mater Sci Mater Med 1997; 8:163–74.

    Article  CAS  PubMed  Google Scholar 

  61. Isayeva IS, Kasibhatla BT, Rosenthal KS et al. Characterization and performance of membranes designed for macroencapsulation/implantation of pancreatic islet cells. Biomaterials 2003; 24:3483–91.

    Article  CAS  PubMed  Google Scholar 

  62. Lanza RP, Chick WL. Encapsulated Cell Therapy. Scientific American Science and Medicine 1995; 4:16–25.

    Google Scholar 

  63. Lanza RP, Hayes JL, Chick WL. Encapsulated cell technology. BioTechnology 1996; 14:1107–11.

    Article  CAS  Google Scholar 

  64. Lanza RP, Kuhtreiber WM, Ecker DM et al. A simple method for xenotransplanting cells and tissues into rats using uncoated alginate microreactors. Transplant Proc 1996; 28:835.

    CAS  PubMed  Google Scholar 

  65. Iwata H, Takagi T, Amemiya H. Agarose microcapsule applied in islet xenografts (hamster to mouse). Transplant Proc 1992; 24:952.

    CAS  PubMed  Google Scholar 

  66. Klomp GF, Ronel SH, Hashiguchi H et al. Hydrogels for encapsulation of pancreatic islet cells. Trans Am Soc Artif Intern Organs 1979; 25:74–76.

    CAS  PubMed  Google Scholar 

  67. Sefton MV. The good, the bd and the obvious: 1993 Clemson Award for Basic Research-Keynote Lecture. Biomaterials 1993; 14(15):1127–34.

    Article  Google Scholar 

  68. Kessler L, Pinget M, Aprahamian M et al. In vitro and in vivo studies of the properties of an artificial membrane for pancreatic islet encapsulation. Horm Metab Res 1991; 23:312–17.

    Article  CAS  PubMed  Google Scholar 

  69. Kessler L, Legeay G, Jesser C et al. Influence of corona surface treatment on the properties of an artificial membrane used for Langerhans islets encapsulation: Permeability and biocompatibility studies. Biomaterials 1995; 16:185–91.

    Article  CAS  PubMed  Google Scholar 

  70. Kessler L, Legeay G, West R et al. Physicochemical and biological studies of corona-treated artificial membranes used for pancreatic islets encapsulation: Mechanism of diffusion and interface modification. J Biomed Mater Res 1997; 34:235–45.

    Article  CAS  PubMed  Google Scholar 

  71. Qi M, Gu Y, Sakata N et al. PVA hydrogel sheet macroencapsulation for the bioartificial pancreas. Biomaterials 2004; 25:5885–92.

    Article  CAS  PubMed  Google Scholar 

  72. Burczak K, Gamian E, Kochman A. Long-term in vivo performance and biocompatibility of poly(vinyl alcohol) hydrogel macrocapsules for hybrid-type artificial pancreas. Biomaterials 1996; 17:2351–56.

    Article  CAS  PubMed  Google Scholar 

  73. Elliott RB, Escobar L, Calafiore R et al. Transplantation of micro-and macroencapsulated piglet islets into mice and monkeys. Transplant Proc 2005; 37:466–69.

    Article  CAS  PubMed  Google Scholar 

  74. De Vos P, Hillebrands JL, De Haan BJ et al. Efficacy of a prevascularized expanded polytetrafluoroethylene solid support system as a transplantation site for pancreatic islets. Transplantation 1997; 63:824–30.

    Article  PubMed  Google Scholar 

  75. De Vos P, Marchetti P. Encapsulation of pancreatic islets for transplantation in diabetes: the untouchable islets. Trends Mol Med 2002; 8:363–66.

    Article  PubMed  Google Scholar 

  76. Dionne KE, Cain BM, Li RH et al. Transport characterization of membranes for immunoisolation. Biomaterials 1996; 17:257–66.

    Article  CAS  PubMed  Google Scholar 

  77. Bouwens L, KlÖppel G. Islet cell neogenesis in the pancreas. Virchows Arch Int J Pathol 1996; 427:553–60.

    CAS  Google Scholar 

  78. Avgoustiniatos ES, Colton CK. Effect of external oxygen mass transfer resistances on viability of immunoisolated tissue. Ann NY Acad Sci 1997; 31:145–67.

    Google Scholar 

  79. Chae SY, Kim SW, Bae YH. Bioactive polymers for biohybrid artificial pancreas. J Drug Target 2001; 9:473–84.

    Article  CAS  PubMed  Google Scholar 

  80. Kuhtreiber WM, Lanza RP, Beyer AM et al. Relationship between insulin secretion and oxygen tension in hybrid diffusion chambers. ASAIO J 1993; 39: M247–51.

    Article  CAS  PubMed  Google Scholar 

  81. Schrezenmeir J, Kirchgessner J, Gero L et al. Effect of microencapsulation on oxygen distribution in islets organs. Transplantation 1994; 57:1308–14.

    Article  CAS  PubMed  Google Scholar 

  82. Whalen DW, Ding Z, Fournier RL. Method for measuring in vivo oxygen transport rates in a bioartificial organ. Tissue Eng 1999; 5:81–89.

    Article  CAS  PubMed  Google Scholar 

  83. Rafael E, Wu GS, Hultenby K et al. Improved survival of macroencapsulated islets of Langerhans by preimplantation of the immunoisolating device: a morphometric study. Cell Transplant 2003; 12:407–12.

    CAS  PubMed  Google Scholar 

  84. Risbud MV, Bhargava S, Bhonde RR. In vivo biocompatibility evaluation of cellulose macrocapsules for islet immunoisolation: Implications of low molecular weight cut-off. J Biomed Mater Res 2003; 66A: 86–92.

    Article  CAS  Google Scholar 

  85. Smith C, Kirk R, West T et al. Diffusion characteristics of microfabricated silicon nanopore membranes as immunoisolation membranes for use in cellular therapeutics. Diabetes Technol Ther 2005; 7:151–62.

    Article  CAS  PubMed  Google Scholar 

  86. Lanza RP, Ecker DM, Kühtreiber WM et al. Simple and inexpensive method for transplanting xenogeneic cells and tissues into rats using alginate gel spheres. Transplant Proc 1995; 27:3322.

    CAS  PubMed  Google Scholar 

  87. Bonnet CS, Walsh DA. Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford) 2005; 44:7–16.

    Article  CAS  Google Scholar 

  88. Auguste P, Lemiere S, Larrieu-Lahargue F et al. Molecular mechanisms of tumor vascularization. Crit Rev Oncol Hematol 2005; 54:53–61.

    Article  PubMed  Google Scholar 

  89. Halle JP, Leblond FA, Pariseau JF et al. Studies on small (<300 microns) microcapsules: II—Parameters governing the production of alginate beads by high voltage electrostatic pulses. Cell Transplant 1994; 3:365–72.

    CAS  PubMed  Google Scholar 

  90. Klock G, Frank H, Houben R et al. Production of purified alginates suitable for use in immunoisolated transplantation. Appl Microbiol Biotechnol 1994; 40:638–43.

    Article  CAS  PubMed  Google Scholar 

  91. Kulseng B, Thu T, Espevik T et al. Alginate polylysine microcapsules as immune barrier: permeability of cytokines and immunoglobulins over the capsule membrane. Cell Transplantation 1997; 6:387–94.

    Article  CAS  PubMed  Google Scholar 

  92. Sandler S, Andersson A, Eizirik DL et al. Assessment of insulin secretion in vitro from microencapsulated fetal porcine islet-like cell clusters and rat, mouse and human pancreatic islets. Transplantation 1997; 63:1712–18.

    Article  CAS  PubMed  Google Scholar 

  93. Sawhney AS, Hubbell JA. Poly(ethylene oxide)-graft-poly(L-lysine)copolymers to enhance the biocompatibility of poly(L-lysine)-alginate micocapsules membranes. Biomaterials 1992; 13(12):863–70.

    Article  CAS  PubMed  Google Scholar 

  94. Duvivier-Kali VF, Omer A, Parent RJ et al. Complete protection of islets against allorejection and autoimmunity by a simple barium-alginate membrane. Diabetes 2001; 50:1698–705.

    Article  CAS  PubMed  Google Scholar 

  95. Soon Shiong P, Heintz RE, Merideth N et al. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 1994; 343:950–951.

    Article  CAS  PubMed  Google Scholar 

  96. Omer A, Duvivier-Kali V, Fernandes J et al. Long-term normoglycemia in rats receiving transplants with encapsulated islets. Transplantation 2005; 79:52–58.

    Article  CAS  PubMed  Google Scholar 

  97. De Vos P, Andersson A, Tam SK et al. Advances and barriers in mammalian cell encapsulation for treatment of Diabetes. Immun Endoc & Metab Agents in Med Chem 2006; 139–53.

    Google Scholar 

  98. Orive G, Bartkowiak A, Lisiecki S et al. Biocompatible oligochitosans as cationic modifiers of alginate/ Ca microcapsules. J Biomed Mater Res B Appl Biomater 2005; 74:429–39.

    CAS  PubMed  Google Scholar 

  99. Basta G, Sarchielli P, Luca G et al. Optimized parameters for microencapsulation of pancreatic islet cells: an in vitro study clueing on islet graft immunoprotection in type 1 diabetes mellitus. Transpl Immunol 2004; 13:289–96.

    Article  CAS  PubMed  Google Scholar 

  100. Ponce S, Orive G, Hernandez R et al. Chemistry and the biological response against immunoisolating alginate-polycation capsules of different composition. Biomaterials 2006; 27:4831–39.

    Article  CAS  PubMed  Google Scholar 

  101. Bystricky S, Malovikova A, Sticzay T. Interaction of acid polysaccharides with polylysine enantiomers, conformation probe in solution. Carbohydrate Polymers 1991; 15:299–308.

    Article  CAS  Google Scholar 

  102. Bystricky S, Malovikova A, Sticzay T. Interaction of alginate and pectins with cationic polypeptides. Carbohydr Res 1990; 13:283–94.

    Article  CAS  Google Scholar 

  103. King GA, Daugulis AJ, Faulkner P et al. Alginate-Polylysine Microcapsules of Controlled Membrane Molecular Weight Cutoff for Mammalian Cell Culture Engineering. Biotechnol Prog 1987; 3:231–40.

    Article  CAS  Google Scholar 

  104. Vandenbossche GM, Van Oostveldt P, Remon JP. A fluorescence method for the determination of the molecular weight cut-off of alginate-polylysine microcapsules. J Pharm Pharmacol 1991; 43:275–77.

    CAS  PubMed  Google Scholar 

  105. Vandenbossche GM, Bracke ME, Cuvelier CA et al. Host reaction against alginate-polylysine microcapsules containing living cells. J Pharm Pharmacol 1993; 45:121–25.

    CAS  PubMed  Google Scholar 

  106. Vandenbossche GM, Bracke ME, Cuvelier CA et al. Host reaction against empty alginate-polylysine microcapsules. Influence of preparation procedure. J Pharm Pharmacol 1993; 45:115–20.

    CAS  PubMed  Google Scholar 

  107. De Vos P, De Haan BJ, Wolters GHJ et al. Factors influencing the adequacy of microencapsulation of rat pancreatic islets. Transplantation 1996; 62:888–93.

    Article  PubMed  Google Scholar 

  108. De Vos P, Wolters GH, Fritschy WM et al. Obstacles in the application of microencapsulation in islet transplantation. Int J Artif Organs 1993; 16:205–12.

    PubMed  Google Scholar 

  109. Van Schilfgaarde R, De Vos P. Factors influencing the properties and performance of microcapsules for immunoprotection of pancreatic islets. J Mol Med 1999; 77:199–205.

    Article  PubMed  Google Scholar 

  110. Uludag H, de-Vos P, Tresco PA. Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 2000; 42:29–64.

    Article  CAS  PubMed  Google Scholar 

  111. Fritschy WM, Wolters GH, Van Schilfgaarde R. Effect of alginate-polylysine-alginate microencapsulation on in vitro insulin release from rat pancreatic islets. Diabetes 1991; 40:37–43.

    Article  CAS  PubMed  Google Scholar 

  112. De Vos P, De Haan B, Van Schilfgaarde R. Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules. Biomaterials 1997; 18:273–78.

    Article  PubMed  Google Scholar 

  113. Stokke BT, Smidrod O, Bruheim P et al. Distribution of uronate residues in alginate chains in relation to alginate gelling properties. Macromolecules 1991; 24:4637.

    Article  CAS  Google Scholar 

  114. Thu B, Bruheim P, Espevik T et al. Alginate polycation microcapsules I. Interaction between alginate and polycation. Biomaterials 1996; 17:1031–40.

    Article  CAS  PubMed  Google Scholar 

  115. Thu B, Bruheim P, Espevik T et al. Alginate polycation microcapsules II. Some functional properties. Biomaterials 1996; 17:1069–79.

    Article  CAS  PubMed  Google Scholar 

  116. Thu B, Skjåk-Braek G, Micali F et al. The spatial distribution of calcium in alginate gel beads analysed by synchrotron-radiation induced X-ray emission (SRIXE). Carbohydrate Research 1997; 297:101–5.

    Article  CAS  Google Scholar 

  117. De Vos P, De Haan BJ, Pater J et al. Association between capsule diameter, adequacy of encapsulation and survival of microencapsulated rat islet allografts. Transplantation 1996; 62:893–99.

    Article  PubMed  Google Scholar 

  118. Strand BK, Ryan L, In’t Veld P et al. Poly-L-lysine induces fibrosis on alginate microcapsules via the induction of cytokines. Cell Transplant 2001; 10:263–77.

    CAS  PubMed  Google Scholar 

  119. De Vos P, Van Hoogmoed CG, Busscher HJ. Chemistry and biocompatibility of alginate-PLL capsules for immunoprotection of mammalian cells. J Biomed Mater Res 2002; 60:252–59.

    Article  PubMed  CAS  Google Scholar 

  120. Van Hoogmoed CG, Busscher HJ, De Vos P. Fourier transform infrared spectroscopy studies of alginate-PLL capsules with varying compositions. J Biomed Mater Res 2003; 67A: 172–78.

    Article  CAS  Google Scholar 

  121. De Vos P, Van Hoogmoed CG, De Haan BJ et al. Tissue responses against immunoisolating alginate-PLL capsules in the immediate posttransplant period. J Biomed Mater Res 2002; 62:430–437.

    Article  PubMed  CAS  Google Scholar 

  122. Dupuy B, Arien A, Perrot Minnot A. FI-IR of membranes made with alginate-polylysine complexes. Variations with mannuronic or guluronic content of the polysaccharides. Art Cells, Blood subs and Immob Biotech 1994; 22:71–82.

    Article  CAS  Google Scholar 

  123. Bunger CM, Gerlach C, Freier T et al. Biocompatibility and surface structure of chemically modified immunoisolating alginate-PLL capsules. J Biomed Mater Res 2003; 67A:1219–27.

    Article  CAS  Google Scholar 

  124. De Vos P, Van Hoogmoed CG, van Zanten J et al. Long-term biocompatibility, chemistry and function of microencapsulated pancreatic islets. Biomaterials 2003; 24:305–12.

    Article  PubMed  Google Scholar 

  125. Desai TA. Microfabrication technology for pancreatic cell encapsulation. Expert Opin Biol Ther 2002; 2:633–46.

    Article  CAS  PubMed  Google Scholar 

  126. Duvivier-Kali VF, Omer A, Parent RJ et al. Complete protection of islets against allorejection and autoimmunity by a simple barium-alginate membrane. Diabetes 2001; 50:1698–705.

    Article  CAS  PubMed  Google Scholar 

  127. King A, Sandler S, Andersson A. The effect of host factors and capsule composition on the cellular overgrowth on implanted alginate capsules. J Biomed Mater Res 2001; 57:374–83.

    Article  CAS  PubMed  Google Scholar 

  128. King A, Andersson A, Strand BL et al. The role of capsule composition and biologic responses in the function of transplanted microencapsulated islets of Langerhans. Transplantation 2003; 76:275–79.

    Article  PubMed  Google Scholar 

  129. De Vos P, van Straaten JF, Nieuwenhuizen AG et al. Why do microencapsulated islet grafts fail in the absence of fibrotic overgrowth? Diabetes 1999; 48:1381–88.

    Article  PubMed  Google Scholar 

  130. De Vos P, Smedema I, van Goor H et al. Association between macrophages activation and function of microencapsulated islets. Diabetologia 2003.

    Google Scholar 

  131. De Vos P, De Haan BJ, van Zanten J et al. Factors influencing functional survival of microencapsulated islets. Cell Transplant 2004; 13:515–24.

    Article  PubMed  Google Scholar 

  132. De Vos P, De Haan BJ, Vegter D et al. Insulin levels after portal and systemic insulin infusion differ in a dose-dependent fashion. Horm Metab Res 1998; 30:721–25.

    Article  PubMed  Google Scholar 

  133. Robitaille R, Dusseault J, Henley N et al. Inflammatory response to peritoneal implantation of alginate-poly-L-lysine microcapsules. Biomaterials 2005; 26:4119–27.

    Article  CAS  PubMed  Google Scholar 

  134. Tang L, Eaton JW. Inflammatory responses to biomaterials. Am J Clin Pathol 1995; 103:466–71.

    CAS  PubMed  Google Scholar 

  135. Rihova B. Immunocompatibility and biocompatibility of cell delivery systems. Adv Drug Deliv Rev 2000; 42:65–80.

    Article  CAS  PubMed  Google Scholar 

  136. Tang L, Eaton JW. Natural responses to unnatural materials: A molecular mechanism for foreign body reactions. Mol Med 1999; 5:351–58.

    CAS  PubMed  Google Scholar 

  137. Tang L, Jennings TA, Eaton JW. Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Natl Acad Sci USA 1998; 95:8841–46.

    Article  CAS  PubMed  Google Scholar 

  138. Babensee JE, Anderson JM, McIntire LV et al. Host response to tissue engineered devices. Adv Drug Deliv Rev 1998; 33:111–39.

    Article  CAS  PubMed  Google Scholar 

  139. Hunt JA, McLaughlin PJ, Flanagan BF. Techniques to investigate cellular and molecular interactions in the host response to implanted biomaterials. Biomaterials 1997; 18:1449–59.

    Article  CAS  PubMed  Google Scholar 

  140. Ricci M, Blasi P, Giovagnoli S et al. Ketoprofen controlled release from composite microcapsules for cell encapsulation: effect on post-transplant acute inflammation. J Control Release 2005; 107:395–407.

    Article  CAS  PubMed  Google Scholar 

  141. Calafiore R, Basta G, Luca G et al. Transplantation of pancreatic islets contained in minimal volume microcapsules in diabetic high mammalians. Ann NY Acad Sci 1999; 875:219–32.

    Article  CAS  PubMed  Google Scholar 

  142. Weber CJ, Safley S, Hagler M et al. Evaluation of graft-host response for various tissue sources and animal models. Ann NY Acad Sci 1999; 875:233–54.

    Article  CAS  PubMed  Google Scholar 

  143. Cruise GM, Hegre OD, Lamberti FV et al. In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly(ethylene glycol) diacrylate membranes. Cell Transplant 1999; 8:293–306.

    CAS  PubMed  Google Scholar 

  144. Kulseng B, Skjak-Braek G, Ryan L et al. Transplantation of alginate microcapsules: generation of antibodies against alginates and encapsulated porcine islet-like cell clusters. Transplantation 1999; 67:978–84.

    Article  CAS  PubMed  Google Scholar 

  145. Calafiore R, Basta G, Osticioli L et al. Coherent microcapsules for pancreatic islet transplantation: A new approach for bioartificial pancreas. Transplant Proc 1996; 28:812–13.

    CAS  PubMed  Google Scholar 

  146. Grohn P, Klock G, Schmitt J et al. Large-scale production of Ba(2?)-alginate-coated islets of Langerhans for immunoisolation. Exp Clin Endocrinol 1994; 102:380–387.

    Article  CAS  PubMed  Google Scholar 

  147. Siebers U, Zekorn T, Horcher A et al. Microencapsulated transplantation of allogeneic islets into specifically presensitized recipients. Transplant Proc 1994; 26:787–88.

    CAS  PubMed  Google Scholar 

  148. Zimmermann U, KlÖck G, Federlin K et al. Production of mitogen-contamination free alginates with variable ratios of mannuronic acid to guluronic acid by free flow electrophoresis. Electrophoresis 1992; 13:269–74.

    Article  CAS  PubMed  Google Scholar 

  149. Ar’Rajab A, Bengmark S, Ahren B. Insulin secretion in streptozotocin-diabetic rats transplanted with immunoisolated islets. Transplantation 1991; 51:570–574.

    Article  PubMed  Google Scholar 

  150. Basic D, Vacek I, Sun AM. Microencapsulation and transplantation of genetically engineered cells: A new approach to somatic gene therapy. Artif Cells Blood Substitutes Immobilization Biotechnol 1996; 24:219–55.

    Article  CAS  Google Scholar 

  151. Chicheportiche D, Reach G. In vitro kinetics of insulin release by microencapsulated rat islets: effect of the size of the microcapsules. Diabetologia 1988; 31:54–57.

    CAS  PubMed  Google Scholar 

  152. Crooks CA, Douglas JA, Broughton RL et al. Microencapsulation of mammalian cells in a HEMA-MMA copolymer: effects on capsule morphology and permeability. J Biomed Mater Res 1990; 24:1241–62.

    Article  CAS  PubMed  Google Scholar 

  153. De Vos P, De Haan BJ, Wolters GHJ et al. Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets. Diabetologia 1997; 40:262–70.

    Article  PubMed  Google Scholar 

  154. Iwata H, Amemiya H, Matsuda T et al. Evaluation of microencapsulated islets in agarose gel as bioartificial pancreas by studies of hormone secretion in culture and by xenotransplantation. Diabetes 1989; 38 Suppl 1:224–25.

    PubMed  Google Scholar 

  155. Korbutt GS, Elliott JF, Ao Z et al. Microencapsulation of neonatal porcine islets: Long-term reversal of diabetes in nude mice and in vitro protection from human complement mediated cytolysis. Transplant Proc 1997; 29:2128.

    Article  CAS  PubMed  Google Scholar 

  156. Stevenson WT, Sefton MV. Graft copolymer emulsions of sodium alginate with hydroxyalkyl methacrylates for microencapsulation. Biomaterials 1987; 8:449–57.

    Article  CAS  PubMed  Google Scholar 

  157. Sun AM. Advantages of microencapsulation as an immunoprotection method in the transplantation of pancreatic islets. Ann Transplant 1997; 2:55–62.

    CAS  PubMed  Google Scholar 

  158. Yderstroede KB. Pancreatic islet transplantation. Experimental and clinical aspects. Dan Med Bull 1987; 34:323–29.

    CAS  PubMed  Google Scholar 

  159. Zhou M, Chen D, Yao Q et al. Microencapsulation of rat islets prolongs xenograft survival in diabetic mice. Chin Med J Engl 1998; 111:394–97.

    CAS  PubMed  Google Scholar 

  160. Calafiore R, Basta G. Artificial pancreas to treat type 1 diabetes mellitus. Methods Mol Med 2007; 140:197–236.

    Article  CAS  PubMed  Google Scholar 

  161. Calafiore R, Basta G, Luca G et al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care 2006; 29:137–38.

    Article  PubMed  Google Scholar 

  162. De Vos P, De Haan BJ, Kamps JA et al. Zeta-potentials of alginate-PLL capsules: a predictive measure for biocompatibility? J Biomed Mater Res A 2007; 80:813–19.

    PubMed  Google Scholar 

  163. Tam SK, De Haan BJ, Faas MM et al. Adsorption of human immunoglobulin to implantable alginate-poly-L-lysine microcapsules: Effect of microcapsule composition. J Biomed Mater Res A 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

de Vos, P., Spasojevic, M., Faas, M.M. (2010). Treatment of Diabetes with Encapsulated Islets. In: Pedraz, J.L., Orive, G. (eds) Therapeutic Applications of Cell Microencapsulation. Advances in Experimental Medicine and Biology, vol 670. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5786-3_5

Download citation

Publish with us

Policies and ethics