Skip to main content

The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes

  • Chapter
  • First Online:
Selected Works of R.M. Dudley

Part of the book series: Selected Works in Probability and Statistics ((SWPS))

Abstract

The first two sections of this paper are introductory and correspond to the two halves of the title. As is well known, there is no complete analog of Lebesue or Haar measure in an infinite-dimensional Hilbert space H, but there is a need for some measure of the sizes of subsets of H. In this paper we shall study subsets C of H which are closed, bounded, convex and symmetric (— x ε C if x ε C). Such a set C will be called a Banach ball, since it is the unit ball of a complete Banach norm on its linear span. In most cases in this paper C will be compact.

Fellow of the Alfred P. Sloan Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bambah, R. P., Polar reciprocal convex bodies. Proc. Cambridge Phil. Soc. 51 (1955), 377–378.

    Article  MATH  MathSciNet  Google Scholar 

  2. Belyaev, Yu. K., Continuity and Hölder(s conditions for sample functions of stationary Gaussian processes. Proc. Fourth Berkeley Symp. Math. Stat. Prob. 2 (1961), 23–34.

    MathSciNet  Google Scholar 

  3. Bonnesen, T. and Fenchel, W., “Theorie der Konvexen Körper.” Springer, Berlin, 1934.

    Google Scholar 

  4. Delporte, J., Fonctions aléatoires presque sûrement continues sur un intervalle fermé. Ann. Inst. Henri Poincaré. B.I (1964), 111–215.

    MathSciNet  Google Scholar 

  5. Doob, J. L., “Stochastic Processes.” Wiley, New York, 1953.

    Google Scholar 

  6. Dudley, R. M., Weak convergence of probabilities on non-separable metric spaces and empirical measures on Euclidean spaces. Ill. J. Math. 10 (1966), 109–126.

    MATH  MathSciNet  Google Scholar 

  7. Fernique, Xavier, Continuité des processes Gaussiens, Compt. Rend. Acad. Sci Paris 258 (1964), 6058–60.

    MATH  MathSciNet  Google Scholar 

  8. Fernique, Xavier, Continuité de certains processus Gaussiens. Sém. R. Fortet, Inst. Henri Poincaré, Paris, 1965.

    Google Scholar 

  9. Gelfand, I. M. and Vilenkin, N. YA., “Generalized Functions, Vol. 4: Applications of Harmonic Analysis (translated by Amiel Feinstein). Academic Press, New York, 1964.

    Google Scholar 

  10. Gross, L., Measurable functions on Hilbert space. Trans. Am. Math. Soc. 105 (1962), 372–390.

    MATH  Google Scholar 

  11. Kahane, J.-P., Propriétés locales des fonctions à séries de Fourier aléatoires, Studia Math. 19 (1960), 1–25.

    MATH  MathSciNet  Google Scholar 

  12. Kelley, J. L., “General Topology.” Van Nostrand, Princeton, New Jersey, 1955.

    Google Scholar 

  13. Kolmogorov, A. N. and Tikhomirov, V. M., ε-entropy and ε-capacity of sets in function spaces (in Russian), Usp. Mat. Nauk 14 (1959), 1–86. [English transl.: Am. Math. Soc. Transl. 17 (1961), 277–364.]

    Google Scholar 

  14. Loève, M., “Probability Theory” (2nd ed.). Van Nostrand, Princeton, New Jersey, 1960.

    Google Scholar 

  15. Lorentz, G. G., Metric entropy and approximation. Bull. Am. Math. Soc. 72 (1966), 903–937.

    Article  MATH  MathSciNet  Google Scholar 

  16. Minlos, R. A., Generalized random processes and their extension to measures, Trudy Moskovsk. Mat. Obsc. 8 (1959), 497–518. [English transl.: Selected Transl. Math. Stat. Prob. 3 (1963), 291–314.

    MathSciNet  Google Scholar 

  17. Santalò, L. A., Acotaciones para la longitud de una curva o para el numero de puntos necesarios para cubrir approximadente un dominio. An. Acad. Brasil. Ciencias 16 (1944), 111–121.

    Google Scholar 

  18. Santalò, L. A., Un invariante afin para los cuerpos convexos del espacio de n dimensiones. Portugal. Math. 8 (1950), 155–161.

    Google Scholar 

  19. Segal, I. E., Tensor algebras over Hilbert spaces, I. Trans. Am. Math. Soc. 81 (1956), 106–134.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Communicated by Irving E. Segal

Received April 18, 1967

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dudley, R.M. (2010). The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes. In: Giné, E., Koltchinskii, V., Norvaisa, R. (eds) Selected Works of R.M. Dudley. Selected Works in Probability and Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5821-1_11

Download citation

Publish with us

Policies and ethics