Skip to main content

The Developing Human Brain: Differences from Adult Brain

  • Chapter
  • First Online:
MR Spectroscopy of Pediatric Brain Disorders
  • 2049 Accesses

Abstract

Human brain development is innately beautiful and bewildering in its complexity. To assemble its integrated parts and circuits all neurons must move from their ventricular wall origin to other locations, sometimes over considerable distances, or complicated trajectories. Once appropriately deployed, the neurons usually extend one long process (if they have not done so during migration), sometimes over great lengths, and other shorter processes usually nearby the cell. Activation of gene sets in different combinations and sequences of at least one half of our entire human genome of 20–30,000 genes is devoted to producing this most complex organ that will constitute only 2 % of our body weight. For the 9 months of intrauterine life and for a short but indeterminate postnatal period, brain growth and development is largely genetically determined. However, environmental factors begin taking a role shortly after conception and become increasingly important with advancing development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bui K, Wappler I, Peters H, Lindsay S, Clowry G, Bayatti N. Investigating gradients of gene expression in early human cortical development. J Anat. 2010;217(4):300–11.

    Article  Google Scholar 

  2. Virchow R. Zur pathologischen anatomie des gehirns: I. Congenitale encephalitis und myelitis. Virch Arch. 1867;38:129–38.

    Article  Google Scholar 

  3. Schmorl CG. Zur kenntniss des ikterus neonatorum, inbesondere der dabei auftretenden gehirnveranderungen. Verhandl deutsch Path Gesellsch. 1904;6:109–15.

    Google Scholar 

  4. Banker BQ, Larroche JC. Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch Neurol. 1962;7:386–410.

    Article  PubMed  CAS  Google Scholar 

  5. Gilles FH. Lesions attributed to perinatal asphyxia in the human. In: Gluck L, editor. Intrauterine asphyxia and the developing fetal brain. Chicago: Year Book Medical Publishers, Inc; 1977. p. 99–107.

    Google Scholar 

  6. Donaldson HH. The growth of the Brain. London and New York: Walter Scott LTD and Charles Scribner’s Sons; 1986.

    Google Scholar 

  7. O’Rahilly R, Müller F. The embryonic human brain: an atlas of developmental stages. New York: Wiley-Liss; 1994.

    Google Scholar 

  8. Humphrey T. The spinal tract of the trigeminal nerve in human embryos between 7.5 and 8.5 weeks of menstrual age and its relation to fetal behavior. J Comp Neurol. 1952;97:143–209.

    Article  PubMed  CAS  Google Scholar 

  9. Humphrey T. Pattern formed at upper cervical spinal cord levels by sensory fibers of spinal and cranial nerves. Arch Neurol Psychiatr. 1955;73:36–46.

    Article  CAS  Google Scholar 

  10. Kehrer M, Krageloh-Mann I, Goelz R, Schoning M. The development of cerebral perfusion in healthy preterm and term neonates. Neuropediatrics. 2003;34(6):281–6.

    Article  PubMed  CAS  Google Scholar 

  11. McLennan JE, Gilles FH, Neff R. A model of growth of the human fetal brain. In: Gilles FH, Leviton A, Dooling EC, editors. The developing human brain: growth and epidemiologic neuropathology. Boston: Wright PSG; 1983. p. 43–58.

    Google Scholar 

  12. Dobbing J, Sands J. Quantitative growth and development of human brain. Arch Dis Child. 1973;48(10):757–67.

    Article  PubMed  CAS  Google Scholar 

  13. Voigt J, Pakkenberg H. Brain weight of Danish children. A forensic material. Acta Anat (Basel). 1983;116(4):290–301.

    Article  CAS  Google Scholar 

  14. Coppoletta JM, Wolbach SB. Body length and organ weights of infants and children: Study of body lengths and normal weights of more important vital organs of body between birth and 12 years of age. Am J Pathol. 1933;9:55–70.

    PubMed  CAS  Google Scholar 

  15. Rabinowicz T, de Courten-Myers GM, Petetot JM, Xi G, de los Reyes E. Human cortex development: estimates of neuronal numbers indicate major loss late during gestation. J Neuropathol Exp Neurol. 1996;55(3):320–8.

    Article  PubMed  CAS  Google Scholar 

  16. Rabinowicz T, Petetot JM, Khoury JC, de Courten-Myers GM. Neocortical maturation during adolescence: change in neuronal soma dimension. Brain Cogn. 2009;69(2):328–36.

    Article  PubMed  Google Scholar 

  17. Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D. Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci USA. 2010;107(29):13135–40.

    Article  PubMed  CAS  Google Scholar 

  18. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA. 2004;101(21):8174–9.

    Article  PubMed  CAS  Google Scholar 

  19. Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, et al. Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci. 2008;28(14):3586–94.

    Article  PubMed  CAS  Google Scholar 

  20. Chklovskii DB. Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron. 2004;43(5):609–17.

    PubMed  CAS  Google Scholar 

  21. Chklovskii DB, Mel BW, Svoboda K. Cortical rewiring and information storage. Nature. 2004;431(7010):782–8.

    Article  PubMed  CAS  Google Scholar 

  22. Mataga N, Mizuguchi Y, Hensch TK. Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator. Neuron. 2004;44(6):1031–41.

    Article  PubMed  CAS  Google Scholar 

  23. Hensch TK, Fagiolini M. Excitatory-inhibitory balance and critical period plasticity in developing visual cortex. Prog Brain Res. 2005;147:115–24.

    Article  PubMed  CAS  Google Scholar 

  24. Sur M, Rubenstein JL. Patterning and plasticity of the cerebral cortex. Science. 2005;310(5749):805–10.

    Article  PubMed  CAS  Google Scholar 

  25. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387(2):167–78.

    Article  PubMed  CAS  Google Scholar 

  26. Fagiolini M, Fritschy JM, Low K, Mohler H, Rudolph U, Hensch TK. Specific GABAA circuits for visual cortical plasticity. Science. 2004;303(5664):1681–3.

    Article  PubMed  CAS  Google Scholar 

  27. Hensch TK, Stryker MP. Columnar architecture sculpted by GABA circuits in developing cat visual cortex. Science. 2004;303(5664):1678–81.

    Article  PubMed  CAS  Google Scholar 

  28. Rolls ET. The functions of the orbitofrontal cortex. Brain Cogn. 2004;55(1):11–29.

    Article  PubMed  Google Scholar 

  29. Kennerley SW, Walton ME, Behrens TE, Buckley MJ, Rushworth MF. Optimal decision making and the anterior cingulate cortex. Nat Neurosci. 2006;9(7):940–7.

    Article  PubMed  CAS  Google Scholar 

  30. Burton H, Snyder AZ, Diamond JB, Raichle ME. Adaptive changes in early and late blind: a FMRI study of verb generation to heard nouns. J Neurophysiol. 2002;88(6):3359–71.

    Article  PubMed  CAS  Google Scholar 

  31. MacKay TL, Jakobson LS, Ellemberg D, Lewis TL, Maurer D, Casiro O. Deficits in the processing of local and global motion in very low birthweight children. Neuropsychologia. 2005;43(12):1738–48.

    Article  PubMed  CAS  Google Scholar 

  32. Sherwood CC, Stimpson CD, Raghanti MA, Wildman DE, Uddin M, Grossman LI, et al. Evolution of increased glia-neuron ratios in the human frontal cortex. Proc Natl Acad Sci USA. 2006;103(37):13606–11.

    Article  PubMed  CAS  Google Scholar 

  33. Travis K, Ford K, Jacobs B. Regional dendritic variation in neonatal human cortex: a quantitative Golgi study. Dev Neurosci. 2005;27(5):277–87.

    Article  PubMed  CAS  Google Scholar 

  34. Stettler DD, Yamahachi H, Li W, Denk W, Gilbert CD. Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron. 2006;49(6):877–87.

    Article  PubMed  CAS  Google Scholar 

  35. Chugani HT. A critical period of brain development: studies of cerebral glucose utilization with PET. Prev Med. 1998;27(2):184–8.

    Article  PubMed  CAS  Google Scholar 

  36. Flechsig P. Anatomie des menschlichen Gehirns und Ruchenmarks. Leipzig: Georg Thieme; 1920.

    Google Scholar 

  37. Brody BA, Kinney HC, Kloman AS, Gilles FH. Sequence of central nervous system myelination in human infancy, I: an autopsy study of myelination. J Neuropathol Exp Neurol. 1987;46:283–301.

    Article  PubMed  CAS  Google Scholar 

  38. Kinney HC, Brody BA, Kloman AS, Gilles FH. Sequence of central nervous system myelination in human infancy, II: patterns of myelination of autopsied infants. J Neuropathol Exp Neurol. 1988;47:217–34.

    Article  PubMed  CAS  Google Scholar 

  39. Gilles FH, Shankle W, Dooling EC. Myelinated Tracts: Growth Patterns. In: Gilles FH, Leviton A, Dooling EC, editors. The developing human brain: growth and epidemiologic neuropathology. Boston: Wright PSG; 1983. p. 117–83.

    Google Scholar 

  40. Petrini JR, Dias T, McCormick MC, Massolo ML, Green NS, Escobar GJ. Increased risk of adverse neurological development for late preterm infants. J Pediatr. 2009;154(2):169–76.

    Article  PubMed  Google Scholar 

  41. Huppi PS, Schuknecht B, Boesch C, Bossi E, Felblinger J, Fusch C, et al. Structural and neurobehavioral delay in postnatal brain development of preterm infants. Pediatr Res. 1996;39(5):895–901.

    Article  PubMed  CAS  Google Scholar 

  42. Marlow N, Roberts BL, Cooke RW. Motor skills in extremely low birthweight children at the age of 6 years. Arch Dis Child. 1989;64(6):839–47.

    Article  PubMed  CAS  Google Scholar 

  43. Skranes JS, Nilsen G, Smevik O, Vik T, Brubakk AM. Cerebral MRI of very low birth weight children at 6 years of age compared with the findings at 1 year. Pediatr Radiol. 1998;28(6):471–5.

    Article  PubMed  CAS  Google Scholar 

  44. Allin M, Matsumoto H, Santhouse AM, Nosarti C, AlAsady MH, Stewart AL, et al. Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain. 2001;124(Pt 1):60–6.

    Article  PubMed  CAS  Google Scholar 

  45. Fearon P, O’Connell P, Frangou S, Aquino P, Nosarti C, Allin M, et al. Brain volumes in adult survivors of very low birth weight: a sibling-controlled study. Pediatrics. 2004;114(2):367–71.

    Article  PubMed  Google Scholar 

  46. Nosarti C, Rushe TM, Woodruff PW, Stewart AL, Rifkin L, Murray RM. Corpus callosum size and very preterm birth: relationship to neuropsychological outcome. Brain. 2004;127(Pt 9):2080–9.

    Article  PubMed  Google Scholar 

  47. Gilles FH, Leviton A, Dooling EC. Developing human brain: growth and epidemiologic neuropathology. Boston: John Wright-PSG Publishing Co; 1983.

    Google Scholar 

  48. Myers RE, Beard R, Adamsons K. Brain swelling in the newborn rhesus monkey following prolonged partial asphyxia. Neurology. 1969;19(10):1012–8.

    Article  PubMed  CAS  Google Scholar 

  49. De Souza SW, Dobbing J. Cerebral oedema in developing brain. 3. Brain water and electrolytes in immature asphyxiated rats treated with dexamethasone. Biol Neonate. 1973;22(5):388–97.

    Article  PubMed  Google Scholar 

  50. De Souza SW, Dobbing J. Cerebral edema in developing brain. II. Asphyxia in the five-day-old rat. Exp Neurol. 1973;39(3):414–23.

    Article  PubMed  Google Scholar 

  51. Spector RG. Water content of the immature rat brain following cerebral anoxia and ischemia. Br J Exp Pathol. 1962;43:472–9.

    PubMed  CAS  Google Scholar 

  52. Streicher E, Wisniewski H, Klatzo I. Resistance of immature brain to experimental cerebral edema. Neurology. 1965;15:833.

    Article  PubMed  CAS  Google Scholar 

  53. Tweed WA, Pash M, Doig G. Cerebrovascular mechanisms in perinatal asphyxia: the role of vasogenic brain edema. Pediatr Res. 1981;15(1):44–6.

    Article  PubMed  CAS  Google Scholar 

  54. Pryse-Davies J, Beard RW. A necropsy study of brain swelling in the newborn with special reference to cerebellar herniation. J Pathol. 1973;109(1):51–73.

    Article  PubMed  CAS  Google Scholar 

  55. Pryse-Davies J. Brain swelling in the newborn: artifact, development, or pathology. Arch Dis Child. 1973;48(2):161–2.

    Article  PubMed  CAS  Google Scholar 

  56. Starr M. Tumors of the brain in childhood. Med News. 1889;54:29–37.

    Google Scholar 

  57. Schultz O, editor. Tumors of infancy and childhood. Philadelphia: Saunders; 1926.

    Google Scholar 

  58. Cushing H. The intracranial tumors of preadolescence. Am J Dis Child. 1927;33:551–84.

    Google Scholar 

  59. Bailey P, Buchanan DN, Bucy PC. Intracranial tumors of infancy and childhood. Chicago: The University of Chicago Press; 1939.

    Google Scholar 

  60. Childhood Brain Tumor Consortium. A study of childhood brain tumors based on surgical biopsies from ten North American institutions: Sample description. J Neuro-Oncol. 1988;6:9–23.

    Article  Google Scholar 

  61. Haymaker W, Margoles C, Pentschew A, et al. Pathology of kernicterus and posticterus encephalopathy. A conference, eleventh annual meeting. New Orleans, Louisiana: Charles C. Thomas; 1961. p. 21–228.

    Google Scholar 

  62. Hansen TW. Pioneers in the scientific study of neonatal jaundice and kernicterus. Pediatrics. 2000;106(2):E15.

    Article  PubMed  CAS  Google Scholar 

  63. Ahdab-Barmada M, Moossy J. The neuropathology of kernicterus in the premature neonate: diagnostic problems. J Neuropathol Exp Neurol. 1984;43(1):45–56.

    Article  PubMed  CAS  Google Scholar 

  64. Wennberg RP. The blood–brain barrier and bilirubin encephalopathy. Cell Mol Neurobiol. 2000;20(1):97–109.

    Article  PubMed  CAS  Google Scholar 

  65. Jedlitschky G, Leier I, Buchholz U, Hummel-Eisenbeiss J, Burchell B, Keppler D. ATP-dependent transport of bilirubin glucuronides by the multidrug resistance protein MRP1 and its hepatocyte canalicular isoform MRP2. Biochem J. 1997;327(Pt 1):305–10.

    PubMed  CAS  Google Scholar 

  66. Ostrow JD, Pascolo L, Brites D, Tiribelli C. Molecular basis of bilirubin-induced neurotoxicity. Trends Mol Med. 2004;10(2):65–70.

    Article  PubMed  CAS  Google Scholar 

  67. Gennuso F, Fernetti C, Tirolo C, Testa N, L’Episcopo F, Caniglia S, et al. Bilirubin protects astrocytes from its own toxicity by inducing up-regulation and translocation of multidrug resistance-associated protein 1 (Mrp1). Proc Natl Acad Sci USA. 2004;101(8):2470–5.

    Article  PubMed  CAS  Google Scholar 

  68. Lindenberg R, Freitag E. Morphology of brain lesions from blunt trauma in early infancy. Arch Pathol. 1969;87:298.

    PubMed  CAS  Google Scholar 

  69. Ordia IJ, Strand R, Gilles F, Welch K. Computerized tomography of contusional clefts in the white matter in infants. Report of two cases. J Neurosurg. 1981;54(5):696–8.

    Article  PubMed  CAS  Google Scholar 

  70. Mostow EN, Byrne J, Connelly RR, Mulvihill JJ. Quality of life in long-term survivors of CNS tumors of childhood and adolescence. J Clin Oncol. 1991;9(4):592–9.

    PubMed  CAS  Google Scholar 

  71. Jannoun L, Bloom HJ. Long-term psychological effects in children treated for intracranial tumors. Int J Radiat Oncol Biol Phys. 1990;18(4):747–53.

    Article  PubMed  CAS  Google Scholar 

  72. Rimm IJ, Li FC, Tarbell NJ, Winston KR, Sallan SE. Brain tumors after cranial irradiation for childhood acute lymphoblastic leukemia. A 13-year experience from the Dana-Farber Cancer Institute and the Children’s Hospital. Cancer. 1987;59(8):1506–8.

    Article  PubMed  CAS  Google Scholar 

  73. Ullrich NJ, Robertson R, Kinnamon DD, Scott RM, Kieran MW, Turner CD, et al. Moyamoya following cranial irradiation for primary brain tumors in children. Neurology. 2007;68(12):932–8.

    Article  PubMed  CAS  Google Scholar 

  74. Hall P, Adami HO, Trichopoulos D, Pedersen NL, Lagiou P, Ekbom A, et al. Effect of low doses of ionising radiation in infancy on cognitive function in adulthood: Swedish population based cohort study. BMJ. 2004;328(7430):19.

    Article  PubMed  Google Scholar 

  75. Bresnan M, Gilles FH, Lorenzo A, Watters G, Barlow C. Leukoencephalopathy following combined irradiation and intraventricular methotrexate therapy of brain tumors in childhood. Trans Am Neurol Assoc. 1974;97:204–5.

    Google Scholar 

  76. Inaba H, Khan RB, Laningham FH, Crews KR, Pui CH, Daw NC. Clinical and radiological characteristics of methotrexate-induced acute encephalopathy in pediatric patients with cancer. Ann Oncol. 2008;19(1):178–84.

    Article  PubMed  CAS  Google Scholar 

  77. Dicuonzo F, Salvati A, Palma M, Lefons V, Lasalandra G, De Leonardis F, et al. Posterior reversible encephalopathy syndrome associated with methotrexate neurotoxicity: conventional magnetic resonance and diffusion-weighted imaging findings. J Child Neurol. 2009;24(8):1013–8.

    Article  PubMed  Google Scholar 

  78. Hourani R, Abboud M, Hourani M, Khalifeh H, Muwakkit S. L-asparaginase-induced posterior reversible encephalopathy syndrome during acute lymphoblastic leukemia treatment in children. Neuropediatrics. 2008;39(1):46–50.

    Article  PubMed  CAS  Google Scholar 

  79. Kieslich M, Porto L, Lanfermann H, Jacobi G, Schwabe D, Bohles H. Cerebrovascular complications of L-asparaginase in the therapy of acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2003;25(6):484–7.

    Article  PubMed  Google Scholar 

  80. Gieron MA, Barak LS, Estrada J. Severe encephalopathy associated with ifosfamide administration in two children with metastatic tumors. J Neurooncol. 1988;6(1):29–30.

    Article  PubMed  CAS  Google Scholar 

  81. Shuper A, Stein J, Goshen J, Kornreich L, Yaniv I, Cohen IJ. Subacute central nervous system degeneration in a child: an unusual manifestation of ifosfamide intoxication. J Child Neurol. 2000;15(7):481–3.

    Article  PubMed  CAS  Google Scholar 

  82. Mott SH, Packer RJ, Vezina LG, Kapur S, Dinndorf PA, Conry JA, et al. Encephalopathy with parkinsonian features in children following bone marrow transplantations and high-dose amphotericin B. Ann Neurol. 1995;37(6):810–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floyd H. Gilles M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gilles, F.H. (2013). The Developing Human Brain: Differences from Adult Brain. In: Blüml, S., Panigrahy, A. (eds) MR Spectroscopy of Pediatric Brain Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5864-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5864-8_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5863-1

  • Online ISBN: 978-1-4419-5864-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics