Skip to main content

Differentiation of Seed, Sugar, and Biomass-Producing Genotypes in Saccharinae Species

  • Chapter
  • First Online:
Genomics of the Saccharinae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 11))

Abstract

Plant sinks including grain, stem sugar, leaf, and stem biomass as well as roots and rhizomes are the primary Saccharinae products of interest to humans. While plants evolved particular ratios of these sinks in the wild, humans have selected for altered ratios to fit production needs. Through further selection, specialty cultivars have recently been developed to maximize grain, sugar, biomass, or rhizome production as well as specialty carbohydrate and nutrient compositions. In sorghum and other C4 grass crops these specialized cultivars continue to undergo differentiation and could become, to some extent, genetically isolated populations. There has been limited research on the genetics and diversity of morphologically different crop ideotypes but it appears that inadequate recombination and selection has occurred to genetically isolate such genotypes yet. Importantly, recent results have shown that genetic tradeoffs among these various plant products may be avoidable, because photosynthesis is often sink, rather than source, limited. By combining and selecting multiple product types as optimized in specialty cultivars, harvestable products and energy may be further increased. Here, I review molecular genetic and phenotypic evidence of ideotype differentiation and discuss how harvestable energy might be maximized by carefully selecting for multiple products. There are a wide range of potential confounding factors, such as flowering time, that may alter conclusions and some possible solutions are suggested. If an ultimate goal is maximum usable energy production per unit area to satisfy growing global demand for food, fiber, fuel, and land, then breeding for only single products may sacrifice potential productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali ML, Rajewski JF, Baenziger PS, Gill KS, Eskridge KM, Dweikat I (2008) Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm. Mol Breed 21:497–509

    CAS  Google Scholar 

  • Anderson LE, Appleby AP, Weseloh JW (1960) Characteristics of Johnsongrass rhizomes. Weeds 8:402–406

    Google Scholar 

  • Arriola PE, Ellstrand NC (1996) Crop-to-weed gene flow in the genus Sorghum (Poaceae): spontaneous interspecific hybridization between Johnsongrass, Sorghum halepense, and crop sorghum S. bicolor. Am J Bot 83:1153–1160

    Google Scholar 

  • Arro JA, Veremis JC, Kimbeng CA, Botanga C (2006) Genetic diversity and relationships revealed by AFLP among a collection of Saccharum spontaneum and related species and genera. J Am Soc Sugar Cane Tech 26:101–115

    Google Scholar 

  • Atlin GN, Cooper M, Bjørnstad Ã… (2001) A comparison of formal and participatory breeding approaches using selection theory. Euphytica 122:463–475

    Google Scholar 

  • Baker RF, Braun DM (2008) Tie-dyed2 functions with tie-dyed1 to promote carbohydrate export from maize leaves. Plant Physiol 146:1085–1097

    PubMed  CAS  Google Scholar 

  • Balole TV (2001) Strategies to improve yield and quality of sweet sorghum as a cash crop for small scale farmers in Botswana. Ph.D. dissertation, University of Pretoria, Pretoria, South Africa

    Google Scholar 

  • Bernardo R (2009) Genomewide selection for rapid introgression of exotic germplasm in maize. Crop Sci 49:419–425

    Google Scholar 

  • Besse P, Taylor G, Carroll B, Berding N, Burner D, McIntyre CL (1998) Assessing genetic diversity in a sugarcane germplasm collection using an automated AFLP analysis. Genetica 104:143–153

    Google Scholar 

  • Bian Y-l, Seiji Y, Maiko I, Cai HW (2006) QTLs for sugar content of stalk in sweet sorghum (Sorghum bicolor L. Moench). Agricultural Sciences in China 5:736–744

    Google Scholar 

  • Blum A (1996) Constitutive traits affecting plant performance under stress. In: Edmeades GO, Bänziger M, Mickelson HR, Peña-Valdivia CB (eds) Developing drought and low-N tolerant maize. CIMMYT, El Batan, Mexico, pp 131–135

    Google Scholar 

  • Blum A (1998) Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica 100:77–83

    Google Scholar 

  • Blümmel M, Reddy BVS (2006) Stover fodder quality traits for dual-purpose sorghum genetic improvement. SAT ejournal. 2(1) available online at ejournal.icrisat.org

  • Blümmel M, Zerbini E, Reddy BVS, Hash CT, Bidinger F, Khan AA (2003) Improving the production and utilization of sorghum and pearl millet as livestock feed: progress towards dual-purpose genotypes. Field Crops Res 84:143–158

    Google Scholar 

  • Borlaug NE (2002) Feeding a world of 10 billion people: the miracle ahead. In Vitro Cell Dev Biol Plant 38:221–228

    Google Scholar 

  • Bothast RJ, Schlicher MA (2005) Biotechnological processes for conversion of corn into ethanol. Applied Microbiology and Biotechnology 67:19–25

    Google Scholar 

  • Broadhead DM (1973) Effects of deheading on stalk yield and juice quality of Rio sweet sorghum. Crop Sci 13:395–397

    Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Sanchez Villeda H, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718

    PubMed  CAS  Google Scholar 

  • Burt GW (1974) Adaptation of Johnson grass. Weed Sci 22:59–63

    Google Scholar 

  • Burton GW, Wallace AT, Rachie KO (1972) Chemical composition and nutritive value of pearl millet (Pennisetum typhoides (Burm.) Stapf and E. C. Hubbard) grain. Crop Sci 12:187–188

    CAS  Google Scholar 

  • Carpita NC, McCann MC (2008) Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci 13:415–420

    Google Scholar 

  • Casa AM, Pressoir G, Brown PJ, Mitchell SE, Rooney WL, Tuinstra MR, Franks CD, Kresovich S (2008) Community resources and strategies for association mapping in sorghum. Crop Sci 48:30–40

    Google Scholar 

  • Casler MD, Vogel KP (1999) Accomplishments and impact from breeding for increased forage nutritional value. Crop Sci 39:12–20

    Google Scholar 

  • Castillo-Gonzalez F, Goodman MM (1989) Agronomic evaluation of Latin American maize accessions. Crop Sci 29:853–861

    Google Scholar 

  • Cooper M, van Eeuwijk F, Hammer GL, Podlich DW, Messina C (2009) Modeling QTL for complex traits: detection and context for plant breeding. Curr Opin Plant Biol 12:231–240

    PubMed  CAS  Google Scholar 

  • Cox TS, Bender M, Picone C, Van DL, Tassel HJB, Brummer EC, Zoeller BE, Paterson AH, Jackson WW (2002) Breeding perennial grain crops. Crit Rev Plant Sci 21:51–91

    Google Scholar 

  • Creste S, Accoroni KAG, Pinto LR, Vencosvskv R, Gimenes MA, Xavier MA et al (2010) Genetic variability among sugarcane genotypes based on polymorphism in sucrose metabolism anddrought tolerance genes. Eupytica 172:435–446

    Google Scholar 

  • de Alencar Figueiredo LF, Davrieux F, Fliedel G, Rami JF, Chantereau J, Deu M, Courtois B, Mestres C (2006) Development of NIRS equations for food grain quality traits through exploitation of a core collection of cultivated sorghum. J Agric Food Chem 54:8501–8509

    PubMed  Google Scholar 

  • DeHaan LR, Van Tassel DL, Cox TS (2005) Perennial grain crops: a synthesis of ecology and plant breeding. Renewable Agricultural Food Systems 20:5–14

    Google Scholar 

  • Dhugga KS (2007) Maize biomass yield and composition for biofuels. Crop Sci 47:2211–2227

    Google Scholar 

  • Dingkuhn M, Luquet D, Quilot B, de Reffye P (2005) Environmental and genetic control of morphogenesis in crops: towards models simulating phenotypic plasticity. Aust J Agr Res 56:1289–1302

    Google Scholar 

  • Dingkuhn M, Luquet D, Clément-Vidal A, Tambour L, Kim HK, Song YH (2007) Is plant growth driven by sink regulation? In: Spiertz JHJ, Struik PC, Van Laar HH (eds) Scale and complexity in plant systems research: geneplant-crop relations., pp 157–170

    Google Scholar 

  • Duvick DN (1997) What is yield? In: Edmeades GO, Bänziger M, Mickelson HR, Peña-Valdivia CB (eds) Developing drought and low-N tolerant maize. CIMMYT (Centro Internacional de Mejoramiento de Maíz y Trigo [International Maize and Wheat Improvement Center], El Batan, Mexico, pp 332–335

    Google Scholar 

  • Dykes L, Rooney LW (2006) Sorghum and millet phenols and antioxidants. J Cereal Sci 44:236–251

    CAS  Google Scholar 

  • Fortmeir R, Schubert S (1995) Storage of non-structural carbohydrates in sweet sorghum (Sorghum bicolor L. Moench): comparison of sterile and fertile lines. J Agron Crop Sci 175:189–193

    Google Scholar 

  • Frey TJ, Coors JG, Shaver RD, Lauer JG, Eilert DT, Flannery PJ (2004) Selection for silage quality in the Wisconsin Quality Synthetic and related maize populations. Crop Sci 44:200–1208

    Google Scholar 

  • Givnish TJ (1982) On the adaptive significance of leaf height in forest herbs. Am Nat 120:353–381

    Google Scholar 

  • Hamblin MT, Casa AM, Sun H, Murray SC, Paterson AH, Aquadro CF, Kresovich S (2006) Challenges of detecting directional selection after a bottleneck: lessons from Sorghum bicolor. Genetics 173:953–964

    PubMed  CAS  Google Scholar 

  • Harlan JR, deWet JWJ (1972) A simplified classification of sorghum. Crop Sci 12:172–176

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    CAS  Google Scholar 

  • Hoarau JY, Grivet L, Offman B, Raboin L-M, Diorflar J-P, Payet J, Hellman M, D’Hont A, Glaszmann J-C (2002) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). II. Detection of QTLs for yield components. Theor Appl Genet 105:1027–1037

    Google Scholar 

  • Holm LG, Donald P, Pancho JV, Herberger JP (1977) The World’s worst weeds: distribution and biology. The University Press of Hawaii, Honolulu, Hawaii, 609 p

    Google Scholar 

  • Holtzapple MT, Granda CB (2009) Carboxylate platform: the MixAlco process part 1: comparison of three biomass conversion platforms. Appl Biochem Biotechnol 156:95–106

    PubMed  Google Scholar 

  • Hooks T, Pedersen JF, Marx DB, Vogel KP (2006) Variation in the U.S. photoperiod insensitive sorghum collection for chemical and nutritional traits. Crop Sci 46:751–757

    Google Scholar 

  • Jenkins BM, Baxter LL, Miles TR Jr, Miles TR (1998) Combustion properties of biomass. Fuel Process Technol 54:17–46

    CAS  Google Scholar 

  • Kang MS, Miller JD, Tai PYP (1983) Genetic and phenotypic path analyses and heritability in sugarcane. Crop Sci 23:643–647

    Google Scholar 

  • Klein RR, Mullet JE, Jordan DR, Miller FR, Rooney WL, Menz MA, Franks CD, Klein PE (2008) The effect of tropical sorghum conversion and inbred development on genome diversity as revealed by high-resolution genotyping. Crop Sci 48(S1):S12–S26

    Google Scholar 

  • Labate J, Lamkey KR, Lee M, Woodman WL (1999) Population genetics of increased hybrid performance between two maize populations under reciprocal recurrent selection. In: Coors J, Pandey S (eds) Genetics and exploitation of heterosis in crops. CIMMYT, Mexico City, pp 127–137, ASA, Madison, WI

    Google Scholar 

  • Leeson S, Summers JD (1997) Commercial poultry nutrition, 2nd edn. Guelph, Canada, University Books

    Google Scholar 

  • Letort V, Mahe P, Cournède P-H, de Reffye P, Courtois B (2007) Optimizing plant growth model parameters for genetic selection based on QTL mapping. In: Fourcaud T, Zhang X (eds) Plant growth modeling, simulation, visualization and their applications. IEEE Computer Society, Los Alamitos, California, pp 16–21

    Google Scholar 

  • Lingle SE (1987) Sucrose metabolism in the primary culm of sweet sorghum during development. Crop Sci 27:1214–1219

    CAS  Google Scholar 

  • Lingle SE (1999) Sugar metabolism during growth and development in sugarcane internodes. Crop Sci 39:480–486

    CAS  Google Scholar 

  • Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128

    PubMed  CAS  Google Scholar 

  • Loehle C (1987) Partitioning of reproductive effort in clonal plants: a benefit-cost model. Oikos 49:199–208

    PubMed  Google Scholar 

  • Lorenz A, Anex R, Isci A, Coors J, de Leon N, Weimer P (2009a) Forage quality and composition measurements as predictors of ethanol yield from maize (Zea mays L.) stover. Biotechnol Biofuels 2:5

    PubMed  Google Scholar 

  • Lorenz A, Coors J, de Leon N, Wolfrum E, Hames B, Sluiter A, Weimer PJ (2009b) Characterization, genetic variation, and combining ability of maize traits relevant to the production of cellulosic ethanol. Crop Sci 49:85–98

    CAS  Google Scholar 

  • Lorenzana RE, Lewis MF, Jung K, Jung H-JG, Bernardo R (2009) Quantitative trait loci and trait correlations for maize stover cell wall composition and glucose release for cellulosic ethanol. Crop Sci 50:541–555

    Google Scholar 

  • Makanda I, Pangirayi Tongoonaa P, Dereraa J (2009) Combining ability and heterosis of sorghum germplasm for stem sugar traits under off-season conditions in tropical lowland environments. Field Crop Res 114:272–279

    Google Scholar 

  • Marcelis L, Heuvelink E (2007) Concepts of modelling carbon allocation among plant organs. In: Vos J, Marcelis L, de Visser P, Struijk P, Evers J (eds) Functional–structural plant modeling in crop production, Wageningen UR Frontis Series 22. Springer, Dordrecht, The Netherlands, pp 103–111

    Google Scholar 

  • McCormick AJ, Cramer MD, Watt DA (2008) Changes in photosynthetic rates and gene expression of leaves during a source–sink perturbation in sugarcane. Ann Bot 101:89–102

    PubMed  CAS  Google Scholar 

  • McWhorter CG (1961) Carbohydrate metabolism of johnsongrass as influenced by seasonal growth and herbicide treatments. Weeds 9:563–568

    CAS  Google Scholar 

  • Menkir A, Goldsbrough P, Ejeta G (1997) RAPD based assessment of genetic diversity in cultivated races of sorghum. Crop Sci 37:564–569

    CAS  Google Scholar 

  • Menz M, Klein R, Unruh N, Rooney W, Klein P, Mullet J (2004) Genetic diversity of public inbreds of sorghum determined by mapped AFLP and SSR markers. Crop Sci 44:1236–1244

    CAS  Google Scholar 

  • Ming R, Liu SC, Moore PH, Irvine JE, Paterson AH (2001) QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res 11:2075–2084

    PubMed  CAS  Google Scholar 

  • Ming R, Wang YW, Draye X, Moore PH, Irvine JE, Paterson AH (2002) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet 105:332–345

    PubMed  CAS  Google Scholar 

  • Moore JH (2005) A global view of epistasis. Nat Genet 37:13–14

    PubMed  CAS  Google Scholar 

  • Morrell PL, Williams-Coplin TD, Lattu AL, Bowers JE, Chandler JM, Patterson AH (2005) Crop-to-weed introgression has impacted allelic composition of Johnsongrass populations with and without recent exposure to cultivated sorghum. Mol Ecol 14:2143–2154

    PubMed  CAS  Google Scholar 

  • Mullet JE, Rooney WL, Klein PE, Morishige D, Murphy R, Brady JA (2010) Discovery and utilization of sorghum genes (MA5/MA6). US Patent 20100024065

    Google Scholar 

  • Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008a) Genetic improvement of sorghum as a biofuel feedstock I: quantitative loci for stem sugar and grain nonstructural carbohydrates. Crop Sci 48:2165–2179

    Google Scholar 

  • Murray SC, Rooney WL, Mitchell SE, Sharma A, Klein PE, Mullet JE, Kresovich S (2008b) Genetic improvement of sorghum as a biofuel feedstock II: quantitative loci for stem and leaf structural carbohydrates. Crop Sci 48:2180–2193

    Google Scholar 

  • Murray SC, Rooney WL, Hamblin MT, Mitchell SE, Kresovich S (2009) Sweet sorghum diversity and association mapping for brix and height. Plant Genome 2:48–62

    CAS  Google Scholar 

  • Natoli A, Gorni C, Chegdani F, Ajmone Marsan P, Colombi C, Lorenzoni C, Marocco A (2002) Identification of QTLs associated with sweet sorghum quality. Maydica 47:311–322

    Google Scholar 

  • Nelson PT, Coles ND, Holland JB, Bubeck DM, Smith S, Goodman MM (2008) Molecular characterization of maize inbreds with expired U.S. Plant Variety Protection. Crop Sci 48:1673–1685

    Google Scholar 

  • Nichols NN, Bothast RJ (2008) Production of ethanol from grain. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 75–88

    Google Scholar 

  • Obeso JR (2002) The costs of reproduction in plants. New Phytologist 155:321–348

    Google Scholar 

  • Oliver AL, Pedersen JF, Grant RJ, Klopfenstein TJ (2005) Comparative effects of the sorghum bmr-6 and bmr-12 genes I: forage sorghum yield and quality. Crop Sci 45:2234–2239

    Google Scholar 

  • Pan YB (2007) Genetic diversity and phylogenetic relationships among sugarcane and related species determined from microsatellite DNA data. J Am Soc Sugar Cane Technol 27:57

    Google Scholar 

  • Pan YB, Burner DM, Legendre BL, Grisham MP, White WH (2004) An assessment of the genetic diversity within a collection of S. spontaneum with RAPD-PCR. Genet Resour Crop Evol 51:895–903

    CAS  Google Scholar 

  • Paterson AH (2009) Rhizomatousness: genes important for a weediness syndrme. In Stewart Jr CN. Weeding and Invasive. Plant Genomes Wiley, pp 99–109

    PubMed  CAS  Google Scholar 

  • Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400

    PubMed  CAS  Google Scholar 

  • Pedersen JF, Toy JJ, Funnell DL, Sattler SE, Oliver AL, Grant RA (2008) Registration of BN611, AN612, BN612, and RN613 sorghum genetic stocks with stacked bmr-6 and bmr-12 genes. J Plant Registrations 2:258–262

    Google Scholar 

  • Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium B.P, maize from the Central Balsas River Valley, Mexico. Proc Natl Acad Sci U S A 106:5019–5024

    PubMed  CAS  Google Scholar 

  • Podlich DW, Winkler CR, Cooper M (2004) Mapping as you go: an effective approach for marker-assisted selection of complex traits. Crop Sci 44:1560–1571

    Google Scholar 

  • Raboin LM, Pauquet J, Butterfield M, D’Hont A, Glaszmann JC (2008) Analysis of genome-wide linkage disequilibrium in the highly polyploid sugarcane. Theor Appl Genet 116:701–714

    PubMed  CAS  Google Scholar 

  • Rajendran C, Ramamoorthy K, Backiyarani S (2000) Effect of deheading on juice quality characteristics and sugar yield of sweet sorghum. J Agron Crop Sci 185:23–26

    Google Scholar 

  • Rambla FJ, Garrigues S, de la Guardia M (1997) PLS-NIR determination of total sugar, glucose, fructose and sucrose in aqueous solutions of fruit juices. Anal Chim Acta 334:41–53

    Google Scholar 

  • Rangaswami Ayyangar GN (1935) Juiciness and sweetness in sorghum stalks. Madras Agric J 23:350–352

    Google Scholar 

  • Rapp KE (1947) Carbohydrate metabolism of Johnsongrass. Agron J 39:869–873

    CAS  Google Scholar 

  • Reffay N, Jackson PA, Aitken KS, Hoarau JY, D’Hont A, Besse P, McIntyre CL (2005) Characterisation of genome regions incorporated from an important wild relative into Australian sugarcane. Mol Breed 15:367–381

    CAS  Google Scholar 

  • Reynolds MP, Rajaram S, Sayre KD (1999) Physiological and genetic changes of irrigated wheat in the post-green revolution period and approaches for meeting projected global demand. Crop Sci 39:1611–1621

    Google Scholar 

  • Reynolds MP, Pellegrineschi A, Skovmand B (2005) Sink-limitation to yield and biomass: a summary of some investigations in spring wheat. Ann Appl Biol 146:39–49

    Google Scholar 

  • Ritter KB (2007) An investigation into the genetics and physiology of sugar accumulation in sweet sorghum as a potential model for sugarcane. Ph.D. diss., University of Queensland, School of Land, Crop and Food Sciences. St Lucia, Australia

    Google Scholar 

  • Ritter KB, McIntyre CL, Godwin ID, Jordan DR, Chapman SC (2007) An assessment of the genetic relationship between sweet and grain sorghums, within Sorghum bicolor ssp. bicolor (L.) Moench, using AFLP markers. Euphytica 157:161–176

    CAS  Google Scholar 

  • Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL (2008) Identification of QTL for sugar-related traits in a sweet  ×  grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 22:367–384

    Google Scholar 

  • Rooney WL (1999) Genetic control of a photoperiod-sensitive response in Sorghum bicolor (L.) Moench. Crop Sci 39:397–400

    Google Scholar 

  • Rooney W, Blumenthal J, Bean B, Mullet J (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Bioref 1:147–157

    CAS  Google Scholar 

  • Salas Fernandez MG, Becraft PW, Yin Y, Lubberstedt T (2009) From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci 14:454–461

    PubMed  CAS  Google Scholar 

  • Salvi S (2007) Conserved non-coding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci U S A 104:11376–11381

    PubMed  CAS  Google Scholar 

  • Schenck S, Crepeau MW, Wu KK, Moore PH, Yu Q, Ming R (2004) Genetic diversity and relationships in native hawaiian Saccharum officinarum sugarcane. J Hered 95(4):327–331

    PubMed  CAS  Google Scholar 

  • Scott MP, Edwards JW, Bell CP, Schussler JR, Smith JS (2006) Grain composition and amino acid content in maize cultivars representing 80 years of commercial maize varieties. Maydica 51:417–423

    Google Scholar 

  • Setter TL, Meller VH (1984) Reserve carbohydrate in maize stem: [14C]glucose and [14C]sucrose uptake characteristics. Plant Physiol 75:617–622

    PubMed  CAS  Google Scholar 

  • Shaver DL (1967) Perennial maize. J Hered 58:270–273

    Google Scholar 

  • Shehzad T, Okuizumi H, Kawase M, Okuno K (2009) Development of SSR-based sorghum (Sorghum bicolor (L.) Moench) diversity research set of germplasm and its evaluation by morphological traits. Genet Resour Crop Evol 56:809–827

    CAS  Google Scholar 

  • Shiringani AL, Frisch M, Friedt W (2010) Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theor Appl Genet 121:323–336

    PubMed  CAS  Google Scholar 

  • Smalley S, Blake M (2003) Sweet beginnings: stalk sugar and the domestication of maize. Curr Anthropol 44:675–703

    Google Scholar 

  • Stewart FL (1878) Sugar made from maize and sorghum. The Republic Company, Washington D.C., 106p

    Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    CAS  Google Scholar 

  • Tarpley L, Vietor DM (2007) Compartmentation of sucrose during radial transfer in mature sorghum culm. BMC Plant Biol 7:33

    PubMed  Google Scholar 

  • USDOE (2007) Roadmap for bioenergy and biomass products in the United States. U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program, Washington, D.C.http://www1.eere.energy.gov/biomass/pdfs/obp_roadmapv2_web.pdf

  • Valderrama P, Braga JWB, Poppi RJ (2007) Validation of multivariate calibration models in the determination of sugar cane quality parameters by near infrared spectroscopy. J Braz Chem Soc 18:259

    CAS  Google Scholar 

  • Vandenbrink JP, Delgado MP, Frederick JR, Feltus FA (2010) A sorghum diversity panel biofuel feedstock screen for genotypes with high hydrolysis yield potential. Ind Crops Prod 31:444–448

    CAS  Google Scholar 

  • Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47(Suppl 3):142–153

    Google Scholar 

  • Wang ML, Zhu C, Barkley NA, Chen Z, Erpelding JE, Murray SC, Tuinstra MR, Tesso T, Pederson GA, Yu J (2009) Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection. Theor Appl Genet 120:13–23

    PubMed  Google Scholar 

  • Warwick SI, Thompson BK, Black LD (1984) Population variation in Sorghum halepense, Johnson grass, at the northern limits of its range. Can J Bot 62:1781–1790

    Google Scholar 

  • Warwick SI, Phillips D, Andrews C (1986) Rhizome depth: the critical factor in winter survival of Sorghum halepense (L.) Pers. (Johnson grass). Weed Res 26:381–387

    Google Scholar 

  • Westerbergh A, Doebley J (2004) Quantitative trait loci controlling phenotypes related to the perennial versus annual habit in wild relatives of maize. Theor Appl Genet 109:1544–1553

    PubMed  CAS  Google Scholar 

  • Williams RD, Ingber BF (1977) The effect of intraspecific competition on the growth and development of Johnsongrass under greenhouse conditions. Weed Sci 25:293–297

    Google Scholar 

  • Wisser RJ, Murray SC, Kolkman JM, Ceballos H, Nelson RJ (2008) Selection mapping of loci for quantitative disease resistance in a diverse maize population. Genetics 180:583–599

    PubMed  Google Scholar 

  • Wu L, Birch RG (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol J 5:109–117

    CAS  Google Scholar 

  • Wu X, Zhao R, Bean SR, Seib PA, McLaren JS, Madl RL, Tuinstra M, Lenz MC, Wang D (2007) Factors impacting ethanol production from grain sorghum in the dry-grind process. Cereal Chem 84:130–136

    CAS  Google Scholar 

  • Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103

    PubMed  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Cavan GP, Howarth CJ (2002) Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought-stress conditions. Theor Appl Genet 104:67–83

    PubMed  CAS  Google Scholar 

  • Yadav RS, Bidinger FR, Hash CT, Yadav YP, Yadav OP, Bhatnagar SK, Howarth CJ (2003) Mapping and characterisation of QTL  ×  E interactions for traits determining grain and stover yield in pearl millet. Theor Appl Genet 106:512–520

    PubMed  CAS  Google Scholar 

  • Yan J, Kandianis CB, Harjes CE, Bai L, Kim EH, Yang X, Skinner DJ, Fu Z, Mitchell S, Li Q, Fernandez MG, Zaharieva M, Babu R, Fu Y, Palacios N, Li J, Dellapenna D, Brutnell T, Buckler ES, Warburton ML, Rocheford T (2010) Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. Nat Genet 42:322–327

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Adam Mahan and William Rooney for reviewing this chapter in an earlier form. Also thanks to Andrew Paterson for inclusion and thoughtful editing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth C. Murray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murray, S.C. (2013). Differentiation of Seed, Sugar, and Biomass-Producing Genotypes in Saccharinae Species. In: Paterson, A. (eds) Genomics of the Saccharinae. Plant Genetics and Genomics: Crops and Models, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5947-8_20

Download citation

Publish with us

Policies and ethics