Skip to main content

Transgenic and Knockout Mouse Models of Liver Cancer

  • Chapter
  • First Online:
Molecular Genetics of Liver Neoplasia

Part of the book series: Cancer Genetics ((CANGENETICS))

  • 898 Accesses

Abstract

Hepatocellular carcinoma (HCC) is one of the most frequent and deadliest tumors worldwide. Only few patients are amenable to surgery due to the late HCC diagnosis, and alternative treatments do not significantly improve the patient prognosis when tumor is unresectable. Thus, the investigation of HCC biology is required to identify new targets for early diagnosis, chemoprevention, and treatment. To study the molecular events leading to liver malignant transformation and tumor progression, a number of mouse models have been generated. Here, we highlight some of the genetically engineered mouse models that have proved to be valuable tools to study the molecular pathogenesis of human liver cancer. Also, we briefly describe the similarities between human and mouse HCC at the molecular level with emphasis on the advantages and disadvantages of each model. Although additional work is required, the data show that engineered mouse models have provided a significant contribution in our understanding of the pathogenesis of HCC. In particular, the mouse models have allowed the step-by-step analysis of the multiple stages of liver carcinogenesis with the identification of the underlying alterations in signal transduction pathways, cell cycle, and epigenetic and genetic mechanisms involved. Furthermore, the information obtained from these mouse models will help to design new, more specific and effective therapeutic approaches against human HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali SH, DeCaprio JA (2001) Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol 11:15–23

    PubMed  CAS  Google Scholar 

  • Amaro MJ et al (1999) Hepatitis B virus X protein transactivates the inducible nitric oxide synthase promoter. Hepatology 29:915–923

    PubMed  CAS  Google Scholar 

  • Apte U et al (2006) Activation of Wnt/beta-catenin pathway during hepatocyte growth factor-induced hepatomegaly in mice. Hepatology 44:992–1002

    PubMed  CAS  Google Scholar 

  • Arsura M, Cavin LG (2005) Nuclear factor-kappaB and liver carcinogenesis. Cancer Lett 229:157–169

    PubMed  CAS  Google Scholar 

  • Artandi SE, DePinho RA (2000) Mice without telomerase: what can they teach us about human cancer? Nat Med 6: 852–855

    PubMed  CAS  Google Scholar 

  • Artandi SE et al (2000) Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406:641–645

    PubMed  CAS  Google Scholar 

  • Avila MA et al (2000) Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. J Hepatol 33:907–914

    PubMed  CAS  Google Scholar 

  • Barbacid M (1990) Ras oncogenes: their role in neoplasias. Eur J Clin Invest 20:225–235

    PubMed  CAS  Google Scholar 

  • Bellacosa A et al (1991) A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254:274–277

    PubMed  CAS  Google Scholar 

  • Bertini E et al (2009) YAP: at the crossroad between transformation and tumor suppression. Cell Cycle 8:49–57

    PubMed  CAS  Google Scholar 

  • Bromberg JF (2001) Activation of STAT proteins and growth control. Bioessays 23:161–169

    PubMed  CAS  Google Scholar 

  • Bruix J et al (2004) Focus on hepatocellular carcinoma. Cancer Cell 5:215–219

    PubMed  CAS  Google Scholar 

  • Budker V et al (1998) The efficient expression of intravascularly delivered DNA in rat muscle. Gene Ther 5:272–276

    PubMed  CAS  Google Scholar 

  • Cadoret A et al (2001) Hepatomegaly in transgenic mice expressing an oncogenic form of beta-catenin. Cancer Res 61:3245–3249

    PubMed  CAS  Google Scholar 

  • Cai J et al (1996) Changes in S-adenosylmethionine synthetase in human liver cancer: molecular characterization and significance. Hepatology 24:1090–1097

    PubMed  CAS  Google Scholar 

  • Calvisi DF et al (2001) Activation of beta-catenin during hepatocarcinogenesis in transgenic mouse models: relationship to phenotype and tumor grade. Cancer Res 61:2085–2091

    Google Scholar 

  • Calvisi DF et al (2004) Disruption of beta-catenin pathway or genomic instability define two distinct categories of liver cancer in transgenic mice. Gastroenterology 126:1374–1386

    PubMed  CAS  Google Scholar 

  • Calvisi DF, Thorgeirsson SS (2005) Molecular mechanisms of hepatocarcinogenesis in transgenic mouse models of liver cancer. Toxicol Pathol 33:181–184

    PubMed  CAS  Google Scholar 

  • Calvisi et al (2006) Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 130:1117–1128

    PubMed  CAS  Google Scholar 

  • Calvisi DF et al (2007) Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 117:2713–2722

    PubMed  CAS  Google Scholar 

  • Calvisi et al (2008) Aberrant iNOS signaling is under genetic control in rodent liver cancer and potentially prognostic for the human disease. Carcinogenesis 29:1639–1647

    PubMed  CAS  Google Scholar 

  • Camargo FD et al (2007) YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 17:2054–2060

    PubMed  CAS  Google Scholar 

  • Campbell JS et al (2005) Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci USA 102:3389–3394

    PubMed  CAS  Google Scholar 

  • Campisi J (2003) Cancer and ageing: rival demons? Nat Rev Cancer 3:339–349

    PubMed  CAS  Google Scholar 

  • Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    PubMed  CAS  Google Scholar 

  • Chen YW et al (2007) Loss of p53 and Ink4a/Arf cooperate in a cell autonomous fashion to induce metastasis of hepatocellular carcinoma cells. Cancer Res 67:7589–7596

    PubMed  CAS  Google Scholar 

  • Clevers H, Van de Wetering M (1997) TCF/LEF factors earns their wings. Trends Genet 13:485–489

    PubMed  CAS  Google Scholar 

  • Colnot S et al (2004) Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci USA 101:17216–17221

    PubMed  CAS  Google Scholar 

  • Coulouarn C et al (2006) Oncogene-specific gene expression signatures at preneoplastic stage in mice define distinct mechanisms of hepatocarcinogenesis. Hepatology 44:1003–1011

    PubMed  CAS  Google Scholar 

  • Coulouarn C, Factor VM, Thorgeirsson SS (2008) Transforming growth factor-β gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology 47:2059–2067

    PubMed  CAS  Google Scholar 

  • Conner EA et al (2000) Dual functions of E2F-1 in a transgenic mouse model of liver carcinogenesis. Oncogene 19:5054–5062

    PubMed  CAS  Google Scholar 

  • Conner EA et al (2003) E2F1 blocks and c-Myc accelerates hepatic ploidy in transgenic mouse models. Biochem Biophys Res Commun 302:114–120

    PubMed  CAS  Google Scholar 

  • Cressman DE et al (1996) Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274:1379–1383

    PubMed  CAS  Google Scholar 

  • Czochra P et al (2006) Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. J Hepatol 45:419–428

    PubMed  CAS  Google Scholar 

  • De La Coste A et al (1998) Somatic mutations of the -catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA 85:8847–8851

    Google Scholar 

  • Dong J et al (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130:1120–1133

    PubMed  CAS  Google Scholar 

  • El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132:2557–2576

    PubMed  CAS  Google Scholar 

  • Factor VM et al (1997) Constitutive expression of mature Transforming growth factor β1 in the liver accelerates hepatocarcinogenesis in transgenic mice. Cancer Res 57:2089–2095

    PubMed  CAS  Google Scholar 

  • Factor VM et al (1998) Disruption of redox homeostasis in the transforming growth factor-α/cmyc transgenic mouse model of accelerated hepatocarcinogenesis. J Biol Chem 273:15846–53

    PubMed  CAS  Google Scholar 

  • Factor VM et al (2000) Vitamin E reduces chromosomal damage and inhibits hepatic tumor formation in a transgenic mouse model. Proc Natl Acad Sci USA 97:2196–2201

    PubMed  CAS  Google Scholar 

  • Fan CY et al (1998) Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J Biol Chem 273:15639–15645

    PubMed  CAS  Google Scholar 

  • Farazi PA et al (2006) Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression. Cancer Res 66:4766–4773

    PubMed  CAS  Google Scholar 

  • Farazi PA, DePinho RA (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6:674–678

    PubMed  CAS  Google Scholar 

  • Fausto N (1999) Mouse liver tumorigenesis: models, mechanisms, and relevance to human disease. Semin Liver Dis 19:243–252

    PubMed  CAS  Google Scholar 

  • Feo F et al (2000) Genetic alterations in liver carcinogenesis: implications for new preventive and therapeutic strategies. Crit Rev Oncog 11:19–62

    PubMed  CAS  Google Scholar 

  • Feo F, Pascale R, Calvisi D (2007) Models for liver cancer. In: Alison M (ed) The cancer handbook, 2nd edn. Wiley, New York, NY

    Google Scholar 

  • Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7:654–658

    Google Scholar 

  • Geller SA et al (1994) Hepatocarcinogenesis is the sequel to hepatitis in Z#2 alpha 1-antitrypsin transgenic mice: histopathological and DNA ploidy studies. Hepatology 19:389–397

    PubMed  CAS  Google Scholar 

  • Gilbert E et al (1997) In vivo effects of activated H-ras oncogene expressed in the liver and in urogenital tissues. Int J Cancer 73:749–756

    PubMed  CAS  Google Scholar 

  • Gilson E, Géli V (2007) How telomeres are replicated. Nat Rev Mol Cell Biol 8:825–838

    PubMed  CAS  Google Scholar 

  • Gumbiner BM (1995) Signal transduction by -catenin. Curr Opin Cell Biol 7:634–640

    PubMed  CAS  Google Scholar 

  • Hackel PO et al (1999) Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol 11:184–189

    PubMed  CAS  Google Scholar 

  • Harada N et al (2002) Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of beta-catenin. Cancer Res 62:1971–1977

    PubMed  CAS  Google Scholar 

  • Harada N et al (2004) Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations. Cancer Res 64:48–54

    PubMed  CAS  Google Scholar 

  • Hay N (2005) The Akt-mTOR tango and its relevance to cancer. Cancer Cell 8:179–183

    PubMed  CAS  Google Scholar 

  • Haybaeck J et al (2009) A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell 16:295–308

    PubMed  CAS  Google Scholar 

  • Harvey K, Tapon N (2007) The Salvador-Warts-Hippo pathway - an emerging tumour-suppressor network. Nat Rev Cancer 7:182–191

    PubMed  CAS  Google Scholar 

  • Heindryckx F, Colle I, Van Vlierberghe H (2009) Experimental mouse models for hepatocellular carcinoma research. Int J Exp Pathol 90:367–386

    PubMed  CAS  Google Scholar 

  • Heldin CH et al (1988) Structural and functional aspects of platelet-derived growth factor. Br J Cancer 57:591–593

    PubMed  CAS  Google Scholar 

  • Horie Y et al (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 113:1774–1783

    PubMed  CAS  Google Scholar 

  • Hsu HC et al (2000) Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol 157:763–770

    PubMed  CAS  Google Scholar 

  • Im YH et al (2001) Heterozygous mice for the transforming growth factor-β type II receptor gene have increased susceptibility to hepatocellular carcinogenesis. Cancer Res 61:6665–6668

    PubMed  CAS  Google Scholar 

  • Ito N et al (1991) Elevated levels of transforming growth factor beta messenger RNA and its polypeptide in human hepatocellular carcinoma. Cancer Res 51:4080–4083

    PubMed  CAS  Google Scholar 

  • Jhappan C et al (1990) TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell 61:1137–1146

    PubMed  CAS  Google Scholar 

  • Kaposi-Novak P et al (2006) Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest 116:1582-1595

    PubMed  CAS  Google Scholar 

  • Karin M et al (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310

    PubMed  CAS  Google Scholar 

  • Katzenellenbogen M et al (2006) Multiple adaptive mechanisms to chronic liver disease revealed at early stages of liver carcinogenesis in the Mdr2-knockout mice. Cancer Res 66:4001–4010

    PubMed  CAS  Google Scholar 

  • Kisseleva T et al (2002) Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285:1–24

    PubMed  CAS  Google Scholar 

  • Koike K (2002) Hepatocarcinogenesis in hepatitis viral infection: lessons from transgenic mouse studies. J Gastroenterol 13:55–64

    Google Scholar 

  • Koike K (2005) Molecular basis of hepatitis C virus-associated hepatocarcinogenesis: lessons from animal model studies. Clin Gastroenterol Hepatol 3:S132–S135

    PubMed  CAS  Google Scholar 

  • Ladu S et al (2008) E2F1 inhibits c-Myc-driven apoptosis via PIK3CA/Akt/mTOR and COX-2 in a mouse model of human liver cancer. Gastroenterology 1354:1322–1332

    Google Scholar 

  • Laurent-Puig P et al (2001) Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 120:1763–1773

    PubMed  CAS  Google Scholar 

  • Lee GH, Merlino G, Fausto N (1992) Development of liver tumors in transforming growth factor alpha transgenic mice. Cancer Res 52:5162–5170

    PubMed  CAS  Google Scholar 

  • Lee JS et al (2004) Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet 36:1306–1311

    PubMed  CAS  Google Scholar 

  • Lee JS, Grisham JW, Thorgeirsson SS (2005) Comparative functional genomics for identifying models of human cancer. Carcinogenesis 26:1013–1020

    PubMed  CAS  Google Scholar 

  • Lee Y et al (1998) Human interleukin 6 gene is activated by hepatitis B virus-X protein in human hepatoma cells. Clin Cancer Res 4:1711–1717

    PubMed  CAS  Google Scholar 

  • Leenders MW, Nijkamp MW, Borel Rinkes IH (2008) Mouse models in liver cancer research: a review of current literature. World J Gastroenterol 14:6915–6923

    PubMed  CAS  Google Scholar 

  • Legoix P et al (1999) β-Catenin mutations in hepatocellular carcinoma correlate with a low rate of loss of heterozygosity. Oncogene 18:4044–4046

    PubMed  CAS  Google Scholar 

  • Lewis BC et al (2005) The absence of p53 promotes metastasis in a novel somatic mouse model for hepatocellular carcinoma. Mol Cell Biol 25:1228–1237

    PubMed  CAS  Google Scholar 

  • Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6: 1258–1266

    PubMed  CAS  Google Scholar 

  • Liu SP et al (2007) Glycine N-methyltransferase –/– mice develop chronic hepatitis and glycogen storage disease in the liver. Hepatology 46:1413–1425

    PubMed  CAS  Google Scholar 

  • Lu SC et al (2001) Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc Natl Acad Sci USA 98:5560–5565

    PubMed  CAS  Google Scholar 

  • Luedde T et al (2007) Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11:119–132

    PubMed  CAS  Google Scholar 

  • Lunel-Fabiani F (2007) Recent advances in hepatitis C virus research and understanding the biology of the virus. World J Gastroenterol 13:2404–2405

    PubMed  Google Scholar 

  • Maeda S et al (2005) IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121:977–990

    PubMed  CAS  Google Scholar 

  • Manickan E et al (2001) Conditional liver-specific expression of simian virus 40 T antigen leads to regulatable development of hepatic neoplasm in transgenic mice. J Biol Chem 276:13989–13994

    PubMed  CAS  Google Scholar 

  • Massague J (2008) TGF-beta in cancer. Cell 134:215–230

    PubMed  CAS  Google Scholar 

  • Martínez-Chantar ML et al (2002) Spontaneous oxidative stress and liver tumors in mice lacking methionine adenosyltransferase 1A. FASEB J 16:1292–1294

    PubMed  Google Scholar 

  • Martinez-Chantar ML et al (2008) Loss of the GNMT gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology 47:1191–1199

    PubMed  CAS  Google Scholar 

  • Mato JM, Lu SC (2007) Role of S-adenosyl-L-methionine in liver health and injury. Hepatology 45:1306–1312

    PubMed  CAS  Google Scholar 

  • Mauad TH et al (1994) Mice with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am J Pathol 145:1237–1245

    PubMed  CAS  Google Scholar 

  • Mayhew CN et al (2007) RB loss abrogates cell cycle control and genome integrity to promote liver tumorigenesis. Gastroenterology 133:976–984

    PubMed  CAS  Google Scholar 

  • Murakami H et al (1993) Transgenic mouse model for synergistic effects of nuclear oncogenes and growth factors in tumorigenesis: interaction of c-myc and transforming growth factor alpha in hepatic oncogenesis. Cancer Res 53:1719–1723

    Google Scholar 

  • Nakau M et al (2002) Hepatocellular carcinoma caused by loss of heterozygosity in Lkb1 gene knockout mice. Cancer Res 62:4549–4553

    PubMed  CAS  Google Scholar 

  • Naugler WE et al (2007) Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317:121–124

    PubMed  CAS  Google Scholar 

  • Nevins JR (2001) The Rb/E2F pathway and cancer. Hum Mol Genet 10:699–703

    PubMed  CAS  Google Scholar 

  • Newell P et al (2008). Experimental models of hepatocellular carcinoma. J Hepatol 48:858–879

    PubMed  CAS  Google Scholar 

  • Nicholes K et al (2002) A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am J Pathol 160:2295–2307

    Google Scholar 

  • Nishita M et al (2000) Interaction between Wnt and TGF-beta signaling pathways during formation of Spemann’s organizer. Nature 403:781–785

    PubMed  CAS  Google Scholar 

  • Oberhammer FA et al (1992) Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor beta 1. Proc Natl Acad Sci USA 89:5408–5412

    PubMed  CAS  Google Scholar 

  • Ogata H et al (2006) Deletion of the SOCS3 gene in liver parenchymal cells promotes hepatitis-induced hepatocarcinogenesis. Gastroenterology 131:179–193

    Google Scholar 

  • Olive KP, Tuveson DA (2006) The use of targeted mouse models for preclinical testing of novel cancer therapeutics. Clin Cancer Res 12:5277–5287

    PubMed  CAS  Google Scholar 

  • Park WS et al (1999) Somatic mutations in the kinase domain of the Met/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. Cancer Res 59:307–310

    PubMed  CAS  Google Scholar 

  • Patil MA et al (2009) Role of cyclin D1 as a mediator of c-Met- and beta-catenin-induced hepatocarcinogenesis. Cancer Res 69:253–261

    Google Scholar 

  • Plentz RR et al (2004) Hepatocellular telomere shortening correlates with chromosomal instability and the development of human hepatoma. Hepatology 40:80–86

    Google Scholar 

  • Polakis P (1999) The oncogenic activation of -catenin. Curr Opin Genet Dev 9:15–21

    PubMed  CAS  Google Scholar 

  • Riehle KJ et al (2008) Regulation of liver regeneration and hepatocarcinogenesis by suppressor of cytokine signaling 3. J Exp Med 205:91–103

    PubMed  CAS  Google Scholar 

  • Sakata et al (1996) Hepatocyte growth factor/scatter factor overexpression induces growth, abnormal development, and tumor formation in transgenic mouse livers. Cell Growth Differ 7:1513–1523

    PubMed  CAS  Google Scholar 

  • Sakurai T et al (2006) Loss of hepatic NF-kappa B activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc Natl Acad Sci USA 103:10544–10551

    PubMed  CAS  Google Scholar 

  • Sánchez A et al (1996) Apoptosis induced by transforming growth factor-beta in fetal hepatocyte primary cultures: involvement of reactive oxygen intermediates. J Biol Chem 271:7416–7422

    PubMed  Google Scholar 

  • Sánchez A, Fabregat I (2009) Genetically modified animal models recapitulating molecular events altered in human hepatocarcinogenesis. Clin Transl Oncol 11:208–214

    PubMed  Google Scholar 

  • Sandgren EP et al (1989) Oncogene-induced liver neoplasia in transgenic mice. Oncogene 4:715–724

    PubMed  CAS  Google Scholar 

  • Sandgren EP et al (1990) Overexpression of TGF alpha in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell 61:1121–1135

    PubMed  CAS  Google Scholar 

  • Sandgren EP et al (1992) DNA rearrangement causes hepatocarcinogenesis in albumin– plasminogen activator transgenic mice. Proc Natl Acad Sci USA 89:11523–11527

    PubMed  CAS  Google Scholar 

  • Santoni-Rugiu E et al (1996a) Evolution of neoplastic development in the liver of transgenic mice co-expressing c-myc and transforming growth factor-alpha. Am J Pathol 149:407–428

    PubMed  CAS  Google Scholar 

  • Santoni-Rugiu E et al (1996b) Inhibition of neoplastic development in the liver by hepatocyte growth factor in a transgenic mouse model. Proc Natl Acad Sci USA 93:9577–9582

    PubMed  CAS  Google Scholar 

  • Santoni-Rugiu E, Jensen MR, Thorgeirsson SS (1998) Disruption of the pRb/E2F pathway and inhibition of apoptosis are major oncogenic events in liver constitutively expressing c-myc and transforming growth factor alpha. Cancer Res 58:123–13

    PubMed  CAS  Google Scholar 

  • Shiota G et al (1995) Characterization of double transgenic mice expressing hepatocye growth factor and transforming growth factor alpha. Res Commun Mol Pathol Pharmacol 90:17–24

    PubMed  CAS  Google Scholar 

  • Soresi M et al (2006) Interleukin-6 and its soluble receptor in patients with liver cirrhosis and hepatocellular carcinoma. World J Gastroenterol 12:2563–2568

    PubMed  CAS  Google Scholar 

  • Suda T, Liu D (2007) Hydrodynamic gene delivery: its principles and applications. Mol Ther 15:2063–206

    PubMed  CAS  Google Scholar 

  • Sun B, Karin M (2008) NF-kappaB signaling, liver disease and hepatoprotective agents. Oncogene 2748:6228–6244

    Google Scholar 

  • Takami T et al (2007) Loss of hepatocyte growth factor/c-Met signaling pathway accelerates early stages of N-nitrosodiethylamine induced hepatocarcinogenesis. Cancer Res 67:9844–9851

    PubMed  CAS  Google Scholar 

  • Tannapfel A, Wittekind C (2002) Genes involved in hepatocellular carcinoma: deregulation in cell cycling and apoptosis. Virchows Arch 440:345–352

    PubMed  CAS  Google Scholar 

  • Tennant BC et al (2004) Hepatocellular carcinoma in the woodchuck model of hepatitis B virus infection. Gastroenterology 127:S283–S293

    PubMed  Google Scholar 

  • Thorgeirsson SS, Grisham JW (2002) Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31:339–346

    PubMed  CAS  Google Scholar 

  • Tonjes RR et al (1995) Autocrine mitogen IgEGF cooperates with cmyc or with the Hcs locus during hepatocarcinogenesis in transgenic mice. Oncogene 10:765–768

    PubMed  CAS  Google Scholar 

  • Trusolino L, Comoglio PM (2002) Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer 2:289–300

    Google Scholar 

  • Tward AD et al (2007) Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proc Natl Acad Sci USA 104:14771–14776

    PubMed  CAS  Google Scholar 

  • Yoshida T et al (2004) SOCS1 is a suppressor of liver fibrosis and hepatitis-induced carcinogenesis. J Exp Med 199:1701–1707

    PubMed  CAS  Google Scholar 

  • Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    PubMed  CAS  Google Scholar 

  • Wang R et al (2001) Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol 153:1023–1034

    PubMed  CAS  Google Scholar 

  • Wang AG et al (2005) Gender-dependent hepatic alterations in H-ras12V transgenic mice. J Hepatol 43:836–844

    PubMed  CAS  Google Scholar 

  • Weinberg RA (1991) Tumor suppressor genes. Science 254:1138–1146

    PubMed  CAS  Google Scholar 

  • Wu L, Tang ZY, Li Y (2009) Experimental models of hepatocellular carcinoma: developments and evolution. J Cancer Res Clin Oncol 135:969–981

    PubMed  Google Scholar 

  • Xue W et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    PubMed  CAS  Google Scholar 

  • Zhang G, Budker V, Wolff, JA (1999) High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 10:1735–1737 

    PubMed  CAS  Google Scholar 

  • Zender L et al (2006) Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125:1253–1267

    PubMed  CAS  Google Scholar 

  • Zeng Q, Hong W (2008) The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell 13:188–192

    PubMed  CAS  Google Scholar 

  • Zhou D et al (2009) Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16:425–438

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego F. Calvisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this chapter

Cite this chapter

Calvisi, D.F., Factor, V.M., Thorgeirsson, S.S. (2010). Transgenic and Knockout Mouse Models of Liver Cancer. In: Wang, X., Grisham, J., Thorgeirsson, S. (eds) Molecular Genetics of Liver Neoplasia. Cancer Genetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6082-5_9

Download citation

Publish with us

Policies and ethics