Skip to main content

Neurodynamics of Music

  • Chapter
  • First Online:
Music Perception

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 36))

Abstract

Music is a high-level cognitive capacity, similar in many respects to language (Patel 2007). Like language, music is universal among humans, and musical systems vary among cultures and depend upon learning. But unlike language, music rarely makes reference to the external world. It consists of independent, that is, self-contained, patterns of sound, certain aspects of which are found universally among musical cultures. These two aspects – independence and universality – suggest that general principles of neural dynamics might underlie music perception and musical behavior. Such principles could provide a set of innate constraints that shape human musical behavior and enable children to acquire musical knowledge. This chapter outlines just such a set of principles, explaining key aspects of musical experience directly in terms of nervous system dynamics. At the outset, it may not be obvious that this is possible, but by the end of the chapter it should become clear that a great deal of evidence already supports this view. This chapter examines the evidence that links music perception and behavior to nervous system dynamics and attempts to tie together existing strands of research within a unified theoretical framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Schouten (1938) showed that removing the fundamental component completely from the acoustic stimulus did not alter the pitch, and Licklider (1956) showed that the same pitch was heard even when the frequency region that would normally be occupied by the fundamental was masked by noise.

  2. 2.

    ET in the West is designed to approximate small integer ratio tuning and has been in widespread use for less than 150 years.

References

  • Amari S (1977) Dynamics of pattern formation in lateral inhibition type neural fields. Biol Cybern 27:77–87.

    PubMed  CAS  Google Scholar 

  • Bailek W (1987) Physical limits to sensation and perception. Annu Rev Biophys Biophys Chem 16:455–478.

    Google Scholar 

  • Barnes R, Jones MR (2000) Expectancy, attention, and time. Cogn Psychol 41:254–311.

    PubMed  CAS  Google Scholar 

  • Barrett LF (2009) The future of psychology: connecting mind to brain. Perspect Psychol Sci 4:326–339.

    PubMed  Google Scholar 

  • Bergeson TR, Trehub SE (2006) Infants’ perception of rhythmic patterns. Music Percept 23:345–360.

    Google Scholar 

  • Bharucha JJ (1984) Anchoring effects in music: the resolution of dissonance. Cogn Psychol 16:485–518.

    Google Scholar 

  • Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL (2004) Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci USA 101:9849–9854.

    PubMed  CAS  Google Scholar 

  • Burns EM (1999) Intervals, scales, and tuning. In Deustch D (ed), The Psychology of Music. San Diego: Academic Press, pp. 215–264.

    Google Scholar 

  • Burns EM, Campbell SL (1994) Frequency and frequency ratio resolution by possessors of relative and absolute pitch: examples of categorical perception? J Acoust Soc Am 96:2704–2719.

    PubMed  CAS  Google Scholar 

  • Camalet S, Duke T, Julicher F, Prost J (1999) Auditory sensitivity provided by self tuned critical oscillations of hair cells. Proc Natl Acad Sci USA 97:3183–3188.

    Google Scholar 

  • Cartwright JHE, Gonzalez DL, Piro O (1999a) Nonlinear dynamics of the perceived pitch of complex sounds. Phys Rev Lett 82:5389–5392.

    CAS  Google Scholar 

  • Chen JL, Penhune VB, Zatorre RJ (2008) Listening to musical rhythms recruits motor regions of the brain. Cereb Cortex 18:2844–2854.

    PubMed  Google Scholar 

  • Chertoff ME, Hecox KE (1990) Auditory nonlinearities measured with auditory-evoked potentials. J Acoust Soc Am 87:1248–1254.

    PubMed  CAS  Google Scholar 

  • Choe Y, Magnasco MO, Hudspeth AJ (1998) A model for amplification of hair-bundle motion by cyclical binding of Ca2+ to mechanoelectrical-transduction channels. Proc Natl Acad Sci USA 95:15321–15336.

    PubMed  CAS  Google Scholar 

  • Cont A (2008) Modeling musical anticipation: from the time of music to the music of time. Unpublished Ph.D. dissertation, University of Paris 6 and University of California in San Diego.

    Google Scholar 

  • Coombes S, Bressloff PC (eds) (2005) Bursting: The Genesis of Rhythm in the Nervous System. Singapore: World Scientific Press.

    Google Scholar 

  • Crawford JD (1994) Amplitude expansions for instabilities in populations of globally-coupled oscillators. J Stat Phys 74:1047–1084.

    Google Scholar 

  • Dowling WJ, Harwood DL (1986) Music Cognition. San Diego: Academic Press.

    Google Scholar 

  • Drake C, Penel A, Bigand E (2000) Tapping in time with mechanically and expressively ­performed music. Music Percept 18:1–24.

    Google Scholar 

  • Duke T, Julicher F (2003) Active traveling wave in the cochlea. Phys Rev Lett 90:158101.

    PubMed  Google Scholar 

  • Eguìluz VM, Ospeck M, Choe Y, Hudspeth AJ, Magnasco MO (2000) Essential nonlinearities in hearing. Phys Rev Lett 84:5232.

    PubMed  Google Scholar 

  • Escabi MA, Schreiner CE (2002) Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain. J Neurosci 22:4114–4131.

    PubMed  CAS  Google Scholar 

  • Fitch WT, Rosenfeld AJ (2007) Perception and production of syncopated rhythms. Music Percept 25:43–58.

    Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1:445–466.

    PubMed  CAS  Google Scholar 

  • Fujioka T, Large EW, Trainor LJ, Ross B (2009) Time courses of cortical beta and gamma-band activity during listening to metronome sounds in different tempi. The neurosciences and music III: disorders and plasticity. Ann NY Acad Sci 1169:89–92.

    PubMed  Google Scholar 

  • Gold T (1948) Hearing II. The physical basis of the action of the cochlea. Proc R Soc Lond B Biol Sci 135:492.

    Google Scholar 

  • Goldstein JL (1973) An optimal processor theory for the central formation of the pitch of complex tones. J Acoust Soc Am 54:1496–1516.

    PubMed  CAS  Google Scholar 

  • Grahn JA, Brett M (2007) Rhythm and beat perception in motor areas of the brain. J Cogn Neurosci 19:893–906.

    PubMed  Google Scholar 

  • Grothe B (2003) New roles for synaptic inhibition in sound localization. Nat Rev Neurosci 4:540–550.

    PubMed  CAS  Google Scholar 

  • Guckenheimer J, Kuznetsov YA (2007) Bautin bifurcation. Scholarpedia, p. 1853.

    Google Scholar 

  • Hannon EE, Johnson SP (2005) Infants use meter to categorize rhythms and melodies: implications for musical structure learning. Cogn Psychol 50:354–377.

    PubMed  Google Scholar 

  • Helmholtz HLF (1863) On the Sensations of Tone as a Physiological Basis for the Theory of music. New York: Dover Publications.

    Google Scholar 

  • Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using three coupled first order ­differential equations. Proc R Soc Lond B Biol Sci 221:87–102.

    PubMed  CAS  Google Scholar 

  • Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117:500–544.

    CAS  Google Scholar 

  • Hoppensteadt FC, Izhikevich EM (1996a) Synaptic organizations and dynamical properties of weakly connected neural oscillators I: analysis of a canonical model. Biol Cybern 75:117–127.

    PubMed  CAS  Google Scholar 

  • Hoppensteadt FC, Izhikevich EM (1996b) Synaptic organizations and dynamical properties of weakly connected neural oscillators II: learning phase information. Biol Cybern 75:126–135.

    Google Scholar 

  • Hoppensteadt FC, Izhikevich EM (1997) Weakly Connected Neural Networks. New York: Springer.

    Google Scholar 

  • Houtsma AJM, Goldstein JL (1972) The central origin of the pitch of complex tones: evidence from musical interval recognition. J Acoust Soc Am 51:520–529.

    Google Scholar 

  • Irino T, Patterson RD (2006) A dynamic compressive gammachirp auditory filterbank. IEEE Trans Audio Speech Lang Processing 14:2222–2232.

    PubMed  Google Scholar 

  • Iversen JR, Repp B, Patel AD (2009) Top-down control of rhythm perception modulates early auditory responses. The neurosciences and music III: disorders and plasticity. Ann NY Acad Sci 1169:58–73.

    PubMed  Google Scholar 

  • Izhikevich EM (2000) Subcritical elliptic bursting of Bautin type. SIAM J Appl Math 60:503–535.

    Google Scholar 

  • Izhikevich EM (2007) Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. Cambridge, MA: MIT Press.

    Google Scholar 

  • Izhikevich EM, Edelman GM (2008) Large-scale model of mammalian thalamocortical systems. Proc Natl Acad Sci USA 105:3593–3598.

    PubMed  CAS  Google Scholar 

  • Jackendoff R (2003) Foundations of Language: Brain, Meaning, Grammar, Evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Jantzen KJ, Oullier O, Marshall L, Steinberg FL, Kelso JAS (2007) A Parametric fMRI Investigation of context effects in sensorimotor timing and coordination. Neuropsychologia 45:673–684.

    PubMed  CAS  Google Scholar 

  • Jones MR (1976) Time, our lost dimension: toward a new theory of perception, attention, and memory. Psychol Rev 83:323–335.

    PubMed  CAS  Google Scholar 

  • Jones MR (2008) Musical time. In Hallam S, Cross I, Thaut M (eds), Oxford Handbook of Music Psychology. Oxford: Oxford University Press

    Google Scholar 

  • Jones MR, McAuley JD (2005) Time judgments in global temporal contexts. Percept Psychophys 67:398–417.

    PubMed  Google Scholar 

  • Jones MR, Yee W (1997) Sensitivity to time change: the role of context and skill. J Exp Psychol Hum Percept Perform 23:693–709.

    Google Scholar 

  • Jones MR, Moynihan H, MacKenzie N, Puente J (2002) Temporal aspects of stimulus-driven attending in dynamic arrays. Psychol Sci 13:313–319.

    PubMed  Google Scholar 

  • Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541–577.

    PubMed  CAS  Google Scholar 

  • Julicher F (2001) Mechanical oscillations at the cellular scale. C R Acad Sci IV 2:849–860.

    CAS  Google Scholar 

  • Kameoka A, Kuriyagawa M (1969) Consonance theory part II: consonance of complex tones and its calculation method. J Acoust Soc Am 45:1460–1471.

    PubMed  CAS  Google Scholar 

  • Karabanov A, Blom R, Forsman L, Ullėn F (2009) The dorsal auditory pathway is involved in performance of both visual and auditory rhythms. Neuroimage 44:480–488.

    PubMed  Google Scholar 

  • Kelso JAS (1995) Dynamic Patterns: The Self-Organization of Brain and Behavior. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kemp DT (1979) Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Eur Arch Otorhinolaryngol 224:370.

    Google Scholar 

  • Kern A, Stoop R (2003) Essential role of couplings between hearing nonlinearities. Phys Rev Lett 91:128101–128104.

    PubMed  CAS  Google Scholar 

  • Kirschner S, Tomasello M (2009) Joint drumming: social context facilitates synchronization in preschool children. J Exp Child Psychol 102:299–314.

    PubMed  Google Scholar 

  • Krumhansl CL (1990) Cognitive Foundations of Musical Pitch. New York: Oxford University Press.

    Google Scholar 

  • Krumhansl CL, Kessler EJ (1982) Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychol Rev 89:334–368.

    PubMed  CAS  Google Scholar 

  • Kuramoto A (1975) Self-entrainment of a population of coupled nonlinear oscillators. In International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics, Vol 39. New York: Springer, pp. 420–422.

    Google Scholar 

  • Kutas M, Hillyard SA (1980) Reading senseless sentences: brain potentials reflect semantic incongruity. Science 207:203–205.

    PubMed  CAS  Google Scholar 

  • Langner G (1992) Periodicity coding in the auditory system. Hear Res 60:115–142.

    PubMed  CAS  Google Scholar 

  • Langner G (2007) Temporal processing of periodic signals in the auditory system: neuronal ­representation of pitch, timbre, and harmonicity. Z Audiol 46:80–21.

    Google Scholar 

  • Large EW (2000) On synchronizing movements to music. Human Movement Science 19:527–566.

    Google Scholar 

  • Large EW (2008) Resonating to musical rhythm: theory and experiment. In Grondin S (ed), The Psychology of Time. Cambridge: Emerald, pp. 189–231.

    Google Scholar 

  • Large EW (in press) Dynamics of musical tonality. In Huys R, Jirsa V (eds), Nonlinear dynamics in human behavior. New York: Springer.

    Google Scholar 

  • Large EW, Crawford JD (2002) Auditory temporal computation: interval selectivity based on ­post-inhibitory rebound. J Comput Neurosci 13:125–142.

    PubMed  Google Scholar 

  • Large EW, Jones MR (1999) The dynamics of attending: how people track time varying events. Psychol Rev 106:119–159.

    Google Scholar 

  • Large EW, Palmer C (2002) Perceiving temporal regularity in music. Cogn Sci 26:1–37.

    Google Scholar 

  • Large EW, Snyder JS (2009) Pulse and meter as neural resonance. The neurosciences and music III: disorders and plasticity. Ann NY Acad Sci 1169:46–57.

    PubMed  Google Scholar 

  • Large EW, Tretakis AE (2005) Tonality and Nonlinear Resonance. The neurosciences and music II: from perception to performance. Ann NY Acad Sci 1060:53–56.

    PubMed  Google Scholar 

  • Large EW, Fink P, Kelso JAS (2002) Tracking simple and complex sequences. Psychol Res 66:3–17.

    PubMed  Google Scholar 

  • Large EW, Almonte F, Velasco M (2010) A canonical model for gradient frequency neural ­networks. Physica D: Nonlinear Phenomena 239:905–911.

    CAS  Google Scholar 

  • Larson S (2004) Musical forces and melodic expectations: comparing computer models and experimental results. Music Percept 21:457–498.

    Google Scholar 

  • Lee KM, Skoe E, Kraus N, Ashley R (2009) Selective subcortical enhancement of musical intervals in musicians. J Neurosci 29:5832–5840.

    PubMed  CAS  Google Scholar 

  • Lerdahl F (2001) Tonal Pitch Space. New York: Oxford University Press.

    Google Scholar 

  • Lerdahl F, Jackendoff R (1983) A generative theory of tonal music. Cambridge: MIT Press.

    Google Scholar 

  • Licklider JCR (1956) Auditory frequency analysis. In Cherry C (ed), Information Theory. New York: Academic Press, pp. 253–268.

    Google Scholar 

  • London JM (2004) Hearing in Time: Psychological Aspects of Musical Meter. New York: Oxford University Press.

    Google Scholar 

  • MacKay WA, Mendonca AJ (1995) Field potential oscillatory bursts in parietal cortex before and during reach. Brain Res 704:167–174.

    PubMed  CAS  Google Scholar 

  • McAuley DJ (1995) Perception of Time Phase: Toward an Adaptive Oscillator Model of Rhythmic Pattern Processing. Bloomington, IN: Indiana University Press.

    Google Scholar 

  • McAuley JD, Kidd GR (1995) Temporally directed attending in the discrimination of tempo: further evidence for an entrainment model. J Acoust Soc Am 97:3278.

    Google Scholar 

  • Murphy WJ, Tubis A, Talmadge CL, Long GR, Krieg EF (1996) Relaxation dynamics of spontaneous otoacoustic emissions perturbed by external tone. 3. Response to a single tone at multiple suppression levels. J Acoust Soc Am 100:3979–3982.

    PubMed  CAS  Google Scholar 

  • Murthy VN, Fetz EE (1992) Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci USA 89:5670–5674.

    PubMed  CAS  Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50:2061–2070.

    Google Scholar 

  • Ohm GS (1843) Über die Definition des Tones, nebst daran geknüpfter Theorie der Sirene und ähnlicher tonbildender Vorrichtungen. Ann Phys Chem 135:513–565.

    Google Scholar 

  • Palmer C (1989) Mapping musical thought to musical performance. J Exp Psychol Hum Percept Perform 15:331–346.

    PubMed  CAS  Google Scholar 

  • Palmer C (1997) Music performance. Annu Rev Psychol 48:115–138.

    PubMed  CAS  Google Scholar 

  • Pandya PK, Krishnan A (2004) Human frequency-following response correlates of the distortion product at 2F1–F2. J Am Acad Audiol 15:184–197.

    PubMed  Google Scholar 

  • Parncutt R (1994) A perceptual model of pulse salience and metrical accent in musical rhythms. Music Percept 11:409–464.

    Google Scholar 

  • Patel AD (2007) Music, Language, and the Brain. Oxford: Oxford University Press.

    Google Scholar 

  • Patel AD, Iversen JR, Chen YQ, Repp BH (2005) The influence of metricality and modality on synchronization with a beat. Exp Brain Res 163:226–238.

    PubMed  Google Scholar 

  • Patel AD, Iversen JR, Bregman MR, Schulz I (2009) Experimental evidence for synchronization to a musical beat in a nonhuman animal. Curr Biol 19:827–830.

    PubMed  CAS  Google Scholar 

  • Patterson RD, Robinson K, Holdsworth J, McKeown D, Zhang C, Allerhand M (1992) Complex sounds and auditory images. In Cazals Y, Demany L, Horner K (eds), Auditory Physiology and Perception, Proc 9th International Symposium on Hearing. Oxford: Pergamon, pp. 429–446.

    Google Scholar 

  • Penel A, Drake C (1998) Sources of timing variations in music performance: a psychological segmentation model. Psychol Res 61:12–32.

    Google Scholar 

  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857.

    PubMed  CAS  Google Scholar 

  • Plack CJ, Oxenham AJ (2005) The psychophysics of pitch. In Plack CJ, Fay RR, Oxenham AJ, Popper AN (eds), Pitch: Neural Coding and Perception. New York: Springer, pp. 7–55.

    Google Scholar 

  • Plomp R, Levelt WJM (1965) Tonal consonance and critical bandwidth. J Acoust Soc Am 38:548–560.

    PubMed  CAS  Google Scholar 

  • Poeppel D, Embick D (2005) Defining the relation between linguistics and neuroscience. In Cutler A (ed), Twenty-First Century Psycholinguistics: Four Cornerstones. Mahwah, NJ: Lawrence Erlbaum, pp. 103–118.

    Google Scholar 

  • Prince A, Smolensky P (1997) Optimality: from neural networks to universal grammar. Science 275:1604–1610.

    PubMed  CAS  Google Scholar 

  • Provasi J, Bobin-Begue A (2003) Spontaneous motor tempo and rhythmical synchronisation in 2-1/2 and 4-year-old children. Int J Behav Devel 27:220–231.

    Google Scholar 

  • Purcell DW, Ross B, Picton TW, Pantev C (2007) Cortical responses to the 2f1–f2 combination tone measured indirectly using magnetoencephalography. J Acoust Soc Am 122:992–1003.

    PubMed  Google Scholar 

  • Quené H, Port RF (2005) Effects of timing regularity and metrical expectancy on spoken-word perception. Phonetica 62:1–13.

    PubMed  Google Scholar 

  • Rankin SK, Large EW, Fink PW (2009) Fractal tempo fluctuation and pulse prediction. Music Percept 26:401–413.

    Google Scholar 

  • Repp BH (2002) The embodiment of musical structure: effects of musical context on sensorimotor synchronization with complex timing patterns. In Prinz W, Hommel B (eds), Common Mechanisms in Perception and Action. New York: Oxford University Press, pp. 245–265.

    Google Scholar 

  • Repp BH (2008) Multiple temporal references in sensorimotor synchronization with metrical auditory sequences. Psychol Res 72:79–98.

    PubMed  Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1997) Two-tone distortion on the basilar membrane of the chinchilla cochlea. J Neurophysiol 77:2385–2399.

    PubMed  CAS  Google Scholar 

  • Rougeul A, Bouyer JJ, Dedet L, Debray O (1979) Fast somato-parietal rhythms during combined focal attention and immobility in baboon and squirrel monkey. Electroencephalogr Clin Neurophysiol 46:310–319.

    PubMed  CAS  Google Scholar 

  • Ruggero MA (1992) Responses to sound of the basilar membrane of the mamalian cochlea. Curr Opin Neurobiol 2:449–456.

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L (1997) Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101:2151–2163.

    PubMed  CAS  Google Scholar 

  • Sakai K, Hikosaka O, Miyauchi S, Takino R, Tamada T, Iwata NK, Nielsen M (1999) Neural representation of a rhythm depends on its interval ratio. J Neurosci 19:10074–10081.

    PubMed  CAS  Google Scholar 

  • Salenius S, Hari R (2003) Synchronous cortical oscillatory activity during motor action. Curr Opin Neurobiol 13:678–684.

    PubMed  CAS  Google Scholar 

  • Sanes JN, Donoghue JP (1993) Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proc Natl Acad Sci USA 90:4470–4474.

    PubMed  CAS  Google Scholar 

  • Schachner A, Brady TF, Pepperberg IM, Hauser MD (2009) Spontaneous motor entrainment to music in multiple vocal mimicking species. Curr Biol 19:831–836.

    PubMed  CAS  Google Scholar 

  • Schellenberg EG, Trehub SE (1994) Frequency ratios and the perception of tone patterns. Psychon Bull Rev 1:191–201.

    Google Scholar 

  • Schellenberg EG, Trehub SE (1996) Natural musical intervals: evidence from infant listeners. Psychol Sci 7:272–277.

    Google Scholar 

  • Schouten JF (1938) The Perception of subjective tones. Proc Kon Akad Wetenschap 41:1086–1093.

    Google Scholar 

  • Schouten JF, Ritsma RJ, Cardozo BL (1962) Pitch of the residue. J Acoust Soc Am 34:1418–1424.

    Google Scholar 

  • Seebeck A (1841) Beobachtungen über einige Bedingungen der Entstehung von Tönen. Ann Phys Chem 53:417–436.

    Google Scholar 

  • Seebeck A (1843) Úber die Definition des Tones. Ann Phys Chem 139:353–368.

    Google Scholar 

  • Seth AK, Izhikevich E, Reeke GN, Edelman GM (2006) Theories and measures of consciousness: an extended framework. Proc Natl Acad Sci USA 103:10799–10804.

    PubMed  CAS  Google Scholar 

  • Shapira Lots I, Stone L (2008) Perception of musical consonance and dissonance: an outcome of neural synchronization. J R Soc Interface 5:1429–1434.

    PubMed  Google Scholar 

  • Sloboda JA (1983) The communication of musical metre in piano performance. Q J Exp Psychol 35:377–396.

    Google Scholar 

  • Sloboda JA (1985) Expressive skill in two pianists – metrical communication in real and simulated performances. Can J Psychol 39:273–293.

    Google Scholar 

  • Sloboda JA, Juslin PN (2001) Psychological perspectives on music and emotion. In Juslin PN, Sloboda JA (eds), Music and Emotion: Theory and Research. New York: Oxford University Press, pp. 71–104.

    Google Scholar 

  • Smith JD, Nelson DG, Grohskopf LA, Appleton T (1994) What child is this? What interval was that? Familiar tunes and music perception in novice listeners. Cognition 52:23–54.

    PubMed  CAS  Google Scholar 

  • Snyder JS, Krumhansl CL (2001) Tapping to ragtime: cues to pulse finding. Music Percept 18:455–489.

    Google Scholar 

  • Snyder JS, Large EW (2005) Gamma-band activity reflects the metric structure of rhythmic tone sequences. Cogn Brain Res 24:117–126.

    Google Scholar 

  • Stefanescu R, Jirsa V (2008) A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory neurons. PLoS Comp Biol 4:e1000219.

    Google Scholar 

  • Strogatz SH (2000) From Kuramoto to Crawford: exploring the onset of synchronization in ­populations of coupled oscillators. Physica D 143:1–20.

    Google Scholar 

  • Sutter ML, Schreiner C (1991) Physiology and topography of neurons with multipeaked tuning curves in cat primary auditory cortex. J Neurophysiol 65:1207–1226.

    PubMed  CAS  Google Scholar 

  • Tallon-Baudry C, & Bertrand, O. (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3:151–162.

    PubMed  Google Scholar 

  • Terhardt E (1974) Pitch, consonance, and harmony. J Acoust Soc Am 55:1061–1069.

    PubMed  CAS  Google Scholar 

  • Todd NPM (1985) A model of expressive timing in tonal music. Music Percept 3:33–59.

    Google Scholar 

  • Toiviainen P (1998) An interactive MIDI accompanist. Comput Music J 22:63–75.

    Google Scholar 

  • Toiviainen P, Snyder JS (2003) Tapping to Bach: resonance-based modeling of pulse. Music Percept 21:43–80.

    Google Scholar 

  • von Békésy G (1960) Experiments in Hearing. New York: McGraw-Hill.

    Google Scholar 

  • Vos PG (1973) Waarneming van metrische toonreeksen. Stichting Studentenpers, Nikmegen.

    Google Scholar 

  • Wiggins S (1990) Introduction to Applied Nonlinear Dynamical Systems and Chaos. New York: Springer.

    Google Scholar 

  • Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13:55–80.

    PubMed  CAS  Google Scholar 

  • Winkler I, Haden GP, Ladinig O, Sziller I, Honing H (2009) Newborn infants detect the beat in music. Proc Natl Acad Sci USA 106:2468–2471.

    PubMed  CAS  Google Scholar 

  • Zuckerkandl V (1956) Sound and Symbol: Music and the External World. Princeton, NJ: Princeton University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward W. Large .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this chapter

Cite this chapter

Large, E.W. (2010). Neurodynamics of Music. In: Riess Jones, M., Fay, R., Popper, A. (eds) Music Perception. Springer Handbook of Auditory Research, vol 36. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6114-3_7

Download citation

Publish with us

Policies and ethics