Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 677))

Abstract

Pore-forming proteins (PFPs) possess the intriguing property that they can exist either in a stable water-soluble state or as an integral membrane pore. These molecules can undergo large conformational changes in converting between these two states. Much of what we know about how these proteins change their shape comes from work on bacterial toxins and increasingly, in more recent years, on toxins from other organisms. Surprisingly, a number of pore-forming proteins have recently been characterised that appear to have adopted similar stratagies to toxins for binding and inserting into biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alouf JE. Pore-forming bacterial protein toxins. In: van der Goot FG, ed. Pore-forming toxins. Heidelberg, Springer Verlag 2001:1–14.

    Google Scholar 

  2. Lakey JH, Slatin SL. Pore-forming colicins and their relatives. In: van der Goot FG, ed. Pore-forming toxins. Heidelberg, Springer-Verlag 2001:131–162.

    Google Scholar 

  3. Howard SP, Meiklejohn HG, Shivak D et al. A TonB-like protein and a novel membrane protein containing an ATP-binding cassette function together in exotoxin secretion. Mol Microbiol 1996; 22:595–604.

    Article  CAS  PubMed  Google Scholar 

  4. Gouaux E. Channel-forming toxins: tales of transformation. Curr Opin Struct Biol 1997; 7:566–573.

    Article  CAS  PubMed  Google Scholar 

  5. Parker MW, Pattus F, Tucker AD et al. Structure of the membrane-pore-forming fragment of colicin A. Nature 1989; 337:93–96.

    Article  CAS  PubMed  Google Scholar 

  6. Allured VS, Collier RJ, Carroll SF et al. Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Ångstrom resolution. Proc Natl Acad Sci USA 1986; 83:1320–1324.

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Carrol J, Ellar DJ. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature 1991; 353:815–821.

    Article  CAS  PubMed  Google Scholar 

  8. Choe S, Bennett MJ, Fujii G et al. The crystal structure of diphtheria toxin. Nature 1992; 357:216–222.

    Article  CAS  PubMed  Google Scholar 

  9. Minn, AJ, Velez P, Schendel SL et al. Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 1997; 385:353–357.

    Article  CAS  PubMed  Google Scholar 

  10. Parker MW, Buckley JT, Postma JP et al. Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 1994; 367:292–295.

    Article  CAS  PubMed  Google Scholar 

  11. Ballard J, Crabtree J, Roe BA et al. The primary structure of Clostridium septicum alpha-toxin exhibits similarity with that of Aeromonas hydrophila aerolysin. Infect Immun 1995; 63:340–344.

    CAS  PubMed  Google Scholar 

  12. Song L, Hobaugh MR, Shustak C et al. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 1996; 274:1859–1866.

    Article  CAS  PubMed  Google Scholar 

  13. Petosa C, Collier RJ, Klimpel KR et al. Crystal structure of the anthrax toxin protective antigen. Nature 1997; 385:833–838.

    Article  CAS  PubMed  Google Scholar 

  14. Lacy DB, Wigelsworth DJ, Melnyk RA et al. Structure of heptameric protective antigen bound to an anthrax toxin receptor: a role for receptor in pH-dependent pore formation. Proc Natl Acad Sci USA 2004; 101:13147–13151.

    Article  CAS  PubMed  Google Scholar 

  15. Li J, Koni PA, Ellar DJ. Structure of the mosquitocidal delta-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. J Mol Biol 1996; 257:129–152.

    Article  CAS  PubMed  Google Scholar 

  16. Rossjohn J, Feil SC, McKinstry WJ et al. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 1997; 89:685–692.

    Article  CAS  PubMed  Google Scholar 

  17. Hadders MA, Beringer DX, Gros P. Structure of C8a-MACPF reveals mechanism of membrane attack in complement immune defense. Science 2007; 317:1552–1554.

    Article  CAS  PubMed  Google Scholar 

  18. Rosado CJ, Buckle AM, Law RHP et al. A common fold mediates vertebrate defense and bacterial attack. Science 2007; 317:1548–1551.

    Article  CAS  PubMed  Google Scholar 

  19. Fox RO Jr, Richards FM. A voltage-gated ion channel inferred from the crystal structure of alamethicin at 1.5-Å resolution. Nature 1982; 300:325–330.

    Article  CAS  PubMed  Google Scholar 

  20. Hill CP, Yee J, Selsted ME et al. Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science 1991; 251:1481–1485.

    Article  CAS  PubMed  Google Scholar 

  21. Parker MW, Postma JP, Pattus F et al. Refined structure of the pore-forming domain of colicin A at 2.4 A resolution. J Mol Biol 1992; 224:639–657.

    Article  CAS  PubMed  Google Scholar 

  22. Vetter IR, Parker MW, Tucker AD et al. Crystal structure of a colicin N fragment suggests a model for toxicity. Structure 1998; 6:863–874.

    Article  CAS  PubMed  Google Scholar 

  23. Elkins P, Bunker A, Cramer WA et al. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Structure 1997; 5:443–458.

    Article  CAS  PubMed  Google Scholar 

  24. Wiener M, Freymann D, Ghosh P et al. Crystal structure of colicin Ia. Nature 1997; 385:461–464.

    Article  CAS  PubMed  Google Scholar 

  25. Grochulski P, Masson L, Borisova S et al. Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J Mol Biol 1995; 254:447–464.

    Article  CAS  PubMed  Google Scholar 

  26. Galitsky N, Cody V, Wojtczak A et al. Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr D 2001; 57:1101–1109.

    Article  CAS  PubMed  Google Scholar 

  27. Morse RJ, Yamamoto T, Stroud RM. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 2001; 9:409–417.

    Article  CAS  PubMed  Google Scholar 

  28. Wedekind JE, Trame CB, Dorywalska M et al. Refined crystallographic structure of Pseudomonas aeruginosa exotoxin A and its implications for the molecular mechanism of toxicity. J Mol Biol 2001; 314:823–837.

    Article  CAS  PubMed  Google Scholar 

  29. Anthanasiadis A, Anderluh G, Maček P et al. Crystal structure of the soluble form of equinatoxin II, a pore-forming toxin from the sea anemone Actinia equina. Structure 2001; 9:341–346.

    Article  Google Scholar 

  30. Hinds MG, Zhang W, Anderluh G et al. Solution structure of the eukaryotic pore-forming cytolysin equinatoxin II: implications for pore formation. J Mol Biol 2002; 315:1219–1229.

    Article  CAS  PubMed  Google Scholar 

  31. Mancheño JM, Martín-Benito J, Martínez-Ripoll M et al. Crystal and electron microscopy structures of sticholysin II actinoporin reveal insights into the mechanism of membrane pore formation. Structure 2003; 11:1319–1328.

    Article  PubMed  Google Scholar 

  32. Wallace AJ, Stillman TJ, Atkins A et al. E. coli hemolysin E (HlyE, ClyA, SheA): X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy. Cell 2000; 100:265–276.

    Article  CAS  PubMed  Google Scholar 

  33. Atkins A, Wyborn NR, Wallace AJ et al. Structure-function relationships of a novel bacterial toxin, hemolysin E. The role of alpha G. J Biol Chem 2000; 275:41150–41155.

    Article  CAS  PubMed  Google Scholar 

  34. Olson R, Nariya H, Yokota K et al. Crystal structure of staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nature Struct Biol 1999; 6:134–140.

    Article  CAS  PubMed  Google Scholar 

  35. Pédelacq J-D, Maveyraud L, Prévost G et al. The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins. Structure 1999; 7:277–287.

    Article  PubMed  Google Scholar 

  36. Polekhina G, Giddings KS, Tweten RK et al. Insights into the action of the superfamily of cholesterol-dependent cytolysins from studies of intermedilysin. Proc Natl Acad Sci USA 2005; 102:600–605.

    Article  CAS  PubMed  Google Scholar 

  37. Koni PA, Ellar DJ. Biochemical characterization of Bacillus thuringiensis cytolytic delta-endotoxins. Microbiol 1994; 140:1869–1880.

    Article  CAS  Google Scholar 

  38. Muchmore SW, Sattler M, Liang H et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 1996; 381:335–341.

    Article  CAS  PubMed  Google Scholar 

  39. Antignani A, Youle RJ. How do Bax and Bak lead to permeabilization of the outer mitochondrial membrane? Curr Opin Cell Biol 2006; 18:685–689.

    Article  CAS  PubMed  Google Scholar 

  40. Tschopp J, Masson D, Stanley KK. Structural/functional similarity between proteins involved in complement-and cytotoxic T-lymphocyte-mediated cytolysis. Nature 1986; 322:831–834.

    Article  CAS  PubMed  Google Scholar 

  41. Littler DR. Structural studies of CLIC proteins. PhD thesis, University of New South Wales, Australia 2005.

    Google Scholar 

  42. Edwards JC. A novel p64-related Cl-channel: subcellular distribution and nephron segment-specific expression. Am J Physiol 1999; 276:F398–F408.

    CAS  PubMed  Google Scholar 

  43. Harrop SJ, DeMaere MZ, Fairlie WD et al. Crystal structure of the soluble form of the intracellular chloride ion channel CLIC1 (NCC27) at 1.4Å resolution. J Biol Chem 2001; 276:44993–45000.

    Article  CAS  PubMed  Google Scholar 

  44. Tulk BM, Schlesinger PH, Kapadia SA et al. CLIC-1 functions as a chloride channel when expressed and purified from bacteria. J Biol Chem 2000; 275, 26986–26993.

    CAS  PubMed  Google Scholar 

  45. Tulk BM, Kapadia S, Edwards JC. CLIC1 inserts from the aqueous phase into phospholipids membranes where it functions as an anion channel. Am J Physiol 2002; 282:C1103–C1112.

    CAS  Google Scholar 

  46. Littler DR, Harrop SJ, Fairlie WD et al. The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition. J Biol Chem 2004; 279:9298–9305.

    Article  CAS  PubMed  Google Scholar 

  47. Qian Z, Okuhara D, Abe MK et al. Molecular cloning and characterization of a mitogen-activated protein kinase-associated intracellular chloride channel. J Biol Chem 1999; 274:1621–1627.

    Article  CAS  PubMed  Google Scholar 

  48. Proutski I, Karoulias N, Ashley RH. Overexpressed chloride intracellular channel protein CLIC4 (p64H1) is an essential component of novel plasma membrane anion channels. Biochem Biophys Res Commun 2002; 297:317–322.

    Article  CAS  PubMed  Google Scholar 

  49. Valenzuela SM, Martin DK, Por SB et al. Molecular cloning and expression of a chloride ion channel of cell nuclei. J Biol Chem 1997; 272:12575–12582.

    Article  CAS  PubMed  Google Scholar 

  50. Fernandez-Salas E, Sagar M, Cheng C et al. p53 and tumor necrosis factor α regulate the expression of a mitochondrial chloride channel protein. J Biol Chem 1999; 274:36488–36497.

    Article  CAS  PubMed  Google Scholar 

  51. Tonini R, Ferroni A, Valenzuela SM et al. Functional characterization of the NCC27 nuclear protein in stable transfected CHO-K1 cells. FASEB J 2000; 14:1171–1178.

    CAS  PubMed  Google Scholar 

  52. Berryman MA, Goldenring JR. CLIC4 is enriched at cell-cell junctions and colocalizes with AKAP350 at the centrosome and midbody of cultured mammalian cells. Cell Motil Cytoskeleton 2003; 56:159–172.

    Article  CAS  PubMed  Google Scholar 

  53. Harrop SJ, DeMaere MZ, Fairlie WD et al. Crystal structure of the soluble form of the intracellular chloride ion channel CLIC1 (NCC27) at 1.4Å resolution. J Biol Chem 2001; 276:44993–45000.

    Article  CAS  PubMed  Google Scholar 

  54. Littler DR, Harrop SJ, Fairlie WD et al. The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition. J Biol Chem 2004; 279:9298–9305.

    Article  CAS  PubMed  Google Scholar 

  55. Littler DR, Assaad NN, Harrop SJ et al. Crystal structure of the soluble form of the redox-regulated chloride ion channel protein CLIC4. FEBS J 2005; 272:4996–5007.

    Article  CAS  PubMed  Google Scholar 

  56. Li Y-F, Li D-F, Zeng Z-H et al. Trimeric structure of the wild soluble chloride intracellular ion channel CLIC4 observed in crystals. Biochem Biophys Res Commun 2006; 343:1272–1278.

    Article  CAS  PubMed  Google Scholar 

  57. Littler DR, Harrop SJ, Brown LJ et al. Comparison of vertebrate and invertebrate CLIC proteins: the crystal structure of Caenorhabditis elegans EXC-4 and Drosophila melanogaster DmCLIC. Proteins 2008; 71:364–378.

    Article  CAS  PubMed  Google Scholar 

  58. Cromer BA, Gorman MA, Hansen G et al. Structure of the Janus protein human CLIC2. J Mol Biol 2008; 374:719–731.

    Article  Google Scholar 

  59. Pezard C, Berche P, Mock M. Contribution of individual toxin components to virulence of Bacillus anthracis. Infect Immun 1991; 59:3472–3477.

    CAS  PubMed  Google Scholar 

  60. Bradley KA, Mogridge J, Mourez M et al. Identification of the cellular receptor for anthrax toxin. Nature 2001; 414:225–229.

    Article  CAS  PubMed  Google Scholar 

  61. Scobie HM, Rainey GJ, Bradley KA et al. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci USA 2003; 100:5170–5174.

    Article  CAS  PubMed  Google Scholar 

  62. Lacy DB, Wigelsworth DJ, Melnyk RA et al. Structure of heptameric protective antigen bound to an anthrax toxin receptor: a role for receptor in pH-dependent pore formation. Proc Natl Acad Sci USA 2004; 101:13147–13151.

    Article  CAS  PubMed  Google Scholar 

  63. Santelli E, Bankston LA, Leppla SH et al. Crystal structure of a complex between anthrax toxin and its host cell receptor. Nature 2004; 430:905–908.

    Article  CAS  PubMed  Google Scholar 

  64. Knowles BH. Mechanisms of action of Bacillus thuringiensis insecticidal δ-endotoxins. Adv Insect Physiol 1994; 24:275–308.

    Article  CAS  Google Scholar 

  65. Knight PJK, Knowles BH, Ellar DJ. Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis CryIA(c) toxin. J Biol Chem 1995; 270:17765–17770.

    Article  CAS  PubMed  Google Scholar 

  66. Griffitts JS, Haslam SM, Yang T et al. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 2005; 307:922–925.

    Google Scholar 

  67. Nelson KL, Raja SM, Buckley JT. The glycosylphosphatidylinositol-anchored surface glycoprotein Thy-1 is a receptor for the channel-forming toxin aerolysin. J Biol Chem 1997; 272:12170–12174.

    Article  CAS  PubMed  Google Scholar 

  68. Abrami L, Fivaz M, Glauser P-E et al. A pore-forming toxin interacts with a GPI-anchored protein and causes vacuolation of the endoplasmic reticulum. J Cell Biol 1998; 140:525–540.

    Article  CAS  PubMed  Google Scholar 

  69. MacKenzie CR, Hirama T, Buckley JT. Analysis of receptor binding by the channel-forming toxin aerolysin using surface plasmon resonance. J Biol Chem 1999; 274:22604–22609.

    Article  CAS  PubMed  Google Scholar 

  70. Rossjohn J, Buckley JT, Hazes B et al. Aerolysin and pertussis toxin share a common receptor-binding domain. EMBO J 1997; 16:3426–3434.

    Article  CAS  PubMed  Google Scholar 

  71. Sekino-Suzuki N, Nakamura M, Mitsui KI et al. Contribution of individual tryptophan residues to the structure and activity of theta-toxin (perfringolysin O), a cholesterol-binding cytolysin. Eur J Biochem 1996; 241:941–947.

    Article  CAS  PubMed  Google Scholar 

  72. Jacobs T, Darji A, Frahm N et al. Listeriolysin O: cholesterol inhibits cytolysis but not binding to cellular membranes. Mol Microbiol 1998; 28:1081–1089.

    Article  CAS  PubMed  Google Scholar 

  73. Giddings KS, Johnson AE, Tweten RK. Redefining cholesterol’s role in the mechanism of the cholesterol-dependent cytolysins. Proc Natl Acad Sci USA 2003; 100:11315–11320.

    Article  CAS  PubMed  Google Scholar 

  74. Giddings KS, Zhao J, Sims PJ et al. Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat Struct Mol Biol 2004; 11:1173–1178.

    Article  CAS  PubMed  Google Scholar 

  75. Anderluh G, Macek P. Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria). Toxicon 2002; 40:111–124.

    Article  CAS  PubMed  Google Scholar 

  76. Shepard LA, Shatursky O, Johnson AE et al. The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins. Biochemistry 2000; 39:10284–10293.

    Article  CAS  PubMed  Google Scholar 

  77. Hotze EM, Wilson-Kubalek EM, Rossjohn J et al. Arresting pore formation of a cholesterol-dependent cytolysin by disulfide trapping synchronizes the insertion of the transmembrane beta-sheet from a prepore intermediate. J Biol Chem 2001; 276:8261–8268.

    Article  CAS  PubMed  Google Scholar 

  78. Hotze EM, Heuck AP, Czajkowsky DM et al. Monomer-monomer interactions drive the prepore to pore conversion of a beta-barrel-forming cholesterol-dependent cytolysin. J Biol Chem 2002; 277:11597–11605.

    Article  CAS  PubMed  Google Scholar 

  79. Gilbert RJC, Jimenez JL, Chen S et al. Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of Streptococcus pneumoniae. Cell 1999; 97:647–655.

    Article  CAS  PubMed  Google Scholar 

  80. Ramachandran R, Tweten RK, Johnson AE. Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit beta-strand alignment. Nature Struct Mol Biol 2004; 11:697–705.

    Article  CAS  Google Scholar 

  81. Parker MW, Tucker AD, Tsernoglou D et al. Insights into membrane insertion based on studies of colicins. Trends Biochem Sci 1990; 15:126–129.

    Article  CAS  PubMed  Google Scholar 

  82. Shatursky O, Heuck AP, Shepard LA et al. The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 1999; 99:293–299.

    Article  CAS  PubMed  Google Scholar 

  83. Rossjohn J, Raja SM, Nelson KL et al. Movement of a loop in domain 3 of aerolysin is required for channel formation. Biochemistry 1998; 37:741–746.

    Article  CAS  PubMed  Google Scholar 

  84. Melton J, Parker MW, Rossjohn J et al. The identification and structure of the membrane-spanning domain of the Clostridium septicum alpha toxin. J Biol Chem 2004; 279:14315–14322.

    Article  CAS  PubMed  Google Scholar 

  85. Iacovache I, Paumard P, Scheib H et al. A rivet model for channel formation by aerolysin-like pore-forming toxins. EMBO J 2006; 25:457–466.

    Article  CAS  PubMed  Google Scholar 

  86. Parker MW. Cryptic clues as to how water-soluble protein toxins form pores in membranes. Toxicon 2003; 42:1–6.

    Article  CAS  PubMed  Google Scholar 

  87. Heuck AP, Tweten RK, Johnson AE. Beta-barrel pore-forming toxins: intriguing dimorphic proteins. Biochemistry 2001; 40:9065–9073.

    Article  CAS  PubMed  Google Scholar 

  88. Bonev B, Gilbert RJC, Andrew PW et al. Structural analysis of the protein/lipid complexes associated with pore formation by the bacterial toxin pneumolysin. J Biol Chem 2001; 276:5714–5719.

    Article  CAS  PubMed  Google Scholar 

  89. Landry D, Sullivan S, Nicolaides M et al. Molecular cloning and characterization of p64, a chloride channel from kidney microsomes. J Biol Chem 1993; 268:14948–14955.

    CAS  PubMed  Google Scholar 

  90. Valenzuela SM, Martin DK, Por SB et al. Molecular cloning and expression of a chloride ion channel of cell nuclei. J Biol Chem 1997; 272:12575–12582.

    Article  CAS  PubMed  Google Scholar 

  91. Tonini R, Ferroni A, Valenzuela SM et al. Functional characterization of the NCC27 nuclear protein in stable transfected CHO-K1 cells. FASEB J 2000; 14:1171–1178.

    CAS  PubMed  Google Scholar 

  92. Duncan RR, Westwood PK, Boyd A et al. Rat brain p64H1: expression of a new member of the p64 chloride channel protein family in endoplasmic reticulum. J Biol Chem 1997; 272:23880–23886.

    Article  CAS  PubMed  Google Scholar 

  93. Berry KL, Bulow HE, Hall DH et al. A C. elegans CLIC-like protein required for intracellular tube formation and maintenance. Science 2003; 302:2134–2137.

    Article  CAS  PubMed  Google Scholar 

  94. Kraulis P. MOLSCRIPT: a program to produce both detailed and schematic plots of proteins. J Appl Crystallogr 1991; 24:946–950.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Parker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Feil, S.C., Polekhina, G., Gorman, M.A., Parker, M.W. (2010). Introduction. In: Anderluh, G., Lakey, J. (eds) Proteins Membrane Binding and Pore Formation. Advances in Experimental Medicine and Biology, vol 677. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6327-7_1

Download citation

Publish with us

Policies and ethics