Skip to main content

Mechanisms of Skeletal Muscle Weakness

  • Chapter
  • First Online:
Muscle Biophysics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 682))

Abstract

Skeletal muscle weakness is an important feature of numerous ­pathological conditions and it may also be a component in normal ageing. Decreased muscular strength can be due to decreased muscle mass and/or intrinsic defects in the muscle cells. In this chapter we will discuss decreased force production due to mechanisms intrinsic to skeletal muscle cells. We will mainly use data from mouse disease models to exemplify defects at various sites in the cellular activation-contraction pathway. We will show that depending on the underlying problem, muscle weakness can be due decreased Ca2+ release from the sarcoplasmic reticulum, reduced myofibrillar Ca2+ sensitivity and/or decreased ability of the cross-bridges to generate force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen DG, Westerblad H (1995) The effects of caffeine on intracellular calcium, force and the rate of relaxation of mouse skeletal muscle. J Physiol 487:331–342

    PubMed  CAS  Google Scholar 

  • Allen DG, Lännergren J, Westerblad H (1995) Muscle cell function during prolonged activity: cellular mechanisms of fatigue. Exp Physiol 80:497–527

    PubMed  CAS  Google Scholar 

  • Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332

    Article  PubMed  CAS  Google Scholar 

  • Andrade FH, Reid MB, Allen DG, Westerblad H (1998) Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. J Physiol 509:565–575

    Article  PubMed  CAS  Google Scholar 

  • Andrade FH, Reid MB, Westerblad H (2001) Contractile response of skeletal muscle to low peroxide concentrations: myofibrillar calcium sensitivity as a likely target for redox-modulation. FASEB J 15:309–311

    PubMed  CAS  Google Scholar 

  • Angelin A, Tiepolo T, Sabatelli P, Grumati P, Bergamin N, Golfieri C, Mattioli E, Gualandi F, Ferlini A, Merlini L, Maraldi NM, Bonaldo P, Bernardi P (2007) Mitochondrial dysfunction in the pathogenesis of Ullrich congenital muscular dystrophy and prospective therapy with cyclosporins. Proc Natl Acad Sci U S A 104:991–996

    Article  PubMed  CAS  Google Scholar 

  • Aydin J, Shabalina IG, Place N, Reiken S, Zhang SJ, Bellinger AM, Nedergaard J, Cannon B, Marks AR, Bruton JD, Westerblad H (2008) Nonshivering thermogenesis protects against defective calcium handling in muscle. FASEB J 22:3919–3924

    Article  PubMed  CAS  Google Scholar 

  • Aydin J, Andersson DC, Hänninen SL, Wredenberg A, Tavi P, Park CB, Larsson NG, Bruton JD, Westerblad H (2009) Increased mitochondrial Ca2+ and decreased sarcoplasmic reticulum Ca2+ in mitochondrial myopathy. Hum Mol Genet 18:278–288

    Article  PubMed  CAS  Google Scholar 

  • Barclay CJ (2005) Modelling diffusive O2 supply of isolated preparations of mammalian skeletal and cardiac muscle. J Muscle Res Cell Motil 26:225–235

    Article  PubMed  CAS  Google Scholar 

  • Baylor SM, Hollingworth S (2003) Sarcoplasmic reticulum calcium release compared in ­slow-twitch and fast-twitch fibres of mouse muscle. J Physiol 551:125–138

    Article  PubMed  CAS  Google Scholar 

  • Beard NA, Laver DR, Dulhunty AF (2004) Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Prog Biophys Mol Biol 85:33–69

    Article  PubMed  CAS  Google Scholar 

  • Bellinger AM, Mongillo M, Marks AR (2008a) Stressed out: the skeletal muscle ryanodine ­receptor as a target of stress. J Clin Invest 118:445–453

    Article  PubMed  CAS  Google Scholar 

  • Bellinger AM, Reiken S, Dura M, Murphy PW, Deng SX, Landry DW, Nieman D, Lehnart SE, Samaru M, LaCampagne A, Marks AR (2008b) Remodeling of ryanodine receptor complex causes “leaky” channels: a molecular mechanism for decreased exercise capacity. Proc Natl Acad Sci U S A 105:2198–2202

    Article  PubMed  CAS  Google Scholar 

  • Bellinger AM, Reiken S, Carlson C, Mongillo M, Liu X, Rothman L, Matecki S, Lacampagne A, Marks AR (2009) Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat Med 15:325–330

    Article  PubMed  CAS  Google Scholar 

  • Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833

    Article  PubMed  CAS  Google Scholar 

  • Bruton J, Tavi P, Aydin J, Westerblad H, Lännergren J (2003) Mitochondrial and myoplasmic Ca2+ in single fibres from mouse limb muscles during repeated tetanic contractions. J Physiol 551:179–190

    Article  PubMed  CAS  Google Scholar 

  • Bruton JD, Place N, Yamada T, Silva JP, Andrade FH, Dahlstedt AJ, Zhang SJ, Katz A, Larsson NG, Westerblad H (2008) Reactive oxygen species and fatigue-induced prolonged low-­frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice. J Physiol 586:175–184

    Article  PubMed  CAS  Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  PubMed  CAS  Google Scholar 

  • David G (1999) Mitochondrial clearance of cytosolic Ca2+ in stimulated lizard motor nerve terminals proceeds without progressive elevation of mitochondrial matrix [Ca2+]. J Neurosci 19:7495–7506

    PubMed  CAS  Google Scholar 

  • David G, Barrett JN, Barrett EF (1998) Evidence that mitochondria buffer physiological Ca2+ loads in lizard motor nerve terminals. J Physiol 509:59–65

    Article  PubMed  CAS  Google Scholar 

  • Duchen MR (2000) Mitochondria and Ca2+ in cell physiology and pathophysiology. Cell Calcium 28:339–348

    Article  PubMed  CAS  Google Scholar 

  • Dulhunty AF (2006) Excitation-contraction coupling from the 1950s into the new millennium. Clin Exp Pharmacol Physiol 33:763–772

    Article  PubMed  CAS  Google Scholar 

  • Edwards RH, Hill DK, Jones DA, Merton PA (1977) Fatigue of long duration in human skeletal muscle after exercise. J Physiol 272:769–778

    PubMed  CAS  Google Scholar 

  • Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387:90–94

    Article  PubMed  Google Scholar 

  • Espinosa A, Leiva A, Peña M, Müller M, Debandi A, Hidalgo C, Carrasco MA, Jaimovich E (2006) Myotube depolarization generates reactive oxygen species through NAD(P)H oxidase; ROS-elicited Ca2+ stimulates ERK, CREB, early genes. J Cell Physiol 209:379–388

    Article  PubMed  CAS  Google Scholar 

  • Esposito LA, Melov S, Panov A, Cottrell BA, Wallace DC (1999) Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci U S A 96:4820–4825

    Article  PubMed  CAS  Google Scholar 

  • Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74:49–94

    Article  PubMed  CAS  Google Scholar 

  • Gehlsen GM, Whaley MH (1990) Falls in the elderly: Part II, Balance, strength, and flexibility. Arch Phys Med Rehabil 71:739–741

    PubMed  CAS  Google Scholar 

  • Golozoubova V, Hohtola E, Matthias A, Jacobsson A, Cannon B, Nedergaard J (2001) Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J 15:2048–2050

    PubMed  CAS  Google Scholar 

  • Harper ME, Himms-Hagen J (2001) Mitochondrial efficiency: lessons learned from transgenic mice. Biochim Biophys Acta 1504:159–172

    Article  PubMed  CAS  Google Scholar 

  • Hemingway A (1963) Shivering. Physiol Rev 43:397–422

    PubMed  CAS  Google Scholar 

  • Hidalgo C, Sánchez G, Barrientos G, Aracena-Parks P (2006) A transverse tubule NADPH ­oxidase activity stimulates calcium release from isolated triads via ryanodine receptor type 1 S-glutathionylation. J Biol Chem 281:26473–26482

    Article  PubMed  CAS  Google Scholar 

  • Irwin WA, Bergamin N, Sabatelli P, Reggiani C, Megighian A, Merlini L, Braghetta P, Columbaro M, Volpin D, Bressan GM, Bernardi P, Bonaldo P (2003) Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nat Genet 35:367–371

    Article  PubMed  CAS  Google Scholar 

  • Jones DA (1996) High-and low-frequency fatigue revisited. Acta Physiol Scand 156:265–270

    Article  PubMed  CAS  Google Scholar 

  • Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A 96:13807–13812

    Article  PubMed  CAS  Google Scholar 

  • Keeton RB, Binder-Macleod SA (2006) Low-frequency fatigue. Phys Ther 86:1146–1150

    PubMed  Google Scholar 

  • Kubis HP, Hanke N, Scheibe RJ, Meissner JD, Gros G (2003) Ca2+ transients activate calcineurin/NFATc1 and initiate fast-to-slow transformation in a primary skeletal muscle culture. Am J Physiol Cell Physiol 285:C56–C63

    PubMed  CAS  Google Scholar 

  • Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481–484

    Article  PubMed  CAS  Google Scholar 

  • Lännergren J, Bruton JD, Westerblad H (1999) Vacuole formation in fatigued single muscle fibres from frog and mouse. J Muscle Res Cell Motil 20:19–32

    Article  PubMed  Google Scholar 

  • Lännergren J, Westerblad H, Bruton JD (2001) Changes in mitochondrial Ca2+ detected with Rhod-2 in single frog and mouse skeletal muscle fibres during and after repeated tetanic ­contractions. J Muscle Res Cell Motil 22:265–275

    Article  PubMed  Google Scholar 

  • Larsson NG, Oldfors A (2001) Mitochondrial myopathies. Acta Physiol Scand 171:385–393

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc J, Robinson D, Sharman DF, Tousignant P (1967) Catecholamines and short-term adaptation to cold in mice. Am J Physiol 213:1419–1422

    PubMed  CAS  Google Scholar 

  • Madsen K, Ertbjerg P, Djurhuus MS, Pedersen PK (1996) Calcium content and respiratory control index of skeletal muscle mitochondria during exercise and recovery. Am J Physiol Endo Met 271:E1044–E1050

    CAS  Google Scholar 

  • Malli R, Frieden M, Osibow K, Graier WF (2003) Mitochondria efficiently buffer subplasmalemmal Ca2+ elevation during agonist stimulation. J Biol Chem 278:10807–10815

    Article  PubMed  CAS  Google Scholar 

  • Marcora SM, Staiano W, Manning V (2009) Mental fatigue impairs physical performance in humans. J Appl Physiol 106:857–864

    Article  PubMed  Google Scholar 

  • Marsden CD, Meadows JC, Merton PA (1971) Isolated single motor units in human muscle and their rate of discharge during maximal voluntary effort. J Physiol 217:12P–13P

    PubMed  Google Scholar 

  • Martin V, Millet GY, Martin A, Deley G, Lattier G (2004) Assessment of low-frequency fatigue with two methods of electrical stimulation. J Appl Physiol 97:1923–1929

    Article  PubMed  CAS  Google Scholar 

  • McCormack JG, Denton RM (1993) Mitochondrial Ca2+ transport and the role of intramitochondrial Ca2+ in the regulation of energy metabolism. Dev Neurosci 15:165–173

    Article  PubMed  CAS  Google Scholar 

  • Meriggioli MN (2009) Myasthenia gravis with anti-acetylcholine receptor antibodies. Front Neurol Neurosci 26:94–108

    Article  PubMed  CAS  Google Scholar 

  • Merlini L, Angelin A, Tiepolo T, Braghetta P, Sabatelli P, Zamparelli A, Ferlini A, Maraldi NM, Bonaldo P, Bernardi P (2008) Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies. Proc Natl Acad Sci U S A 105:5225–5229

    Article  PubMed  CAS  Google Scholar 

  • Millar NC, Homsher E (1990) The effect of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers. A steady-state and transient kinetic study. J Biol Chem 265:20234–20240

    CAS  Google Scholar 

  • Millay DP, Sargent MA, Osinska H, Baines CP, Barton ER, Vuagniaux G, Sweeney HL, Robbins J, Molkentin JD (2008) Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nat Med 14:442–447

    Article  PubMed  CAS  Google Scholar 

  • Mishima T, Yamada T, Matsunaga S, Wada M (2005) N-acetylcysteine fails to modulate the in vitro function of sarcoplasmic reticulum of diaphragm in the final phase of fatigue. Acta Physiol Scand 184:195–202

    Article  PubMed  CAS  Google Scholar 

  • Montero M, Alonso MT, Albillos A, Cuchillo-Ibáñez I, Olivares R, Villalobos C, Alvarez J (2002) Effect of inositol 1,4,5-trisphosphate receptor stimulation on mitochondrial [Ca2+] and secretion in chromaffin cells. Biochem J 365:451–459

    Article  PubMed  CAS  Google Scholar 

  • Moopanar TR, Allen DG (2005) Reactive oxygen species reduce myofibrillar Ca2+ sensitivity in fatiguing mouse skeletal muscle at 37°C. J Physiol 564:189–199

    Article  PubMed  CAS  Google Scholar 

  • Moopanar TR, Allen DG (2006) The activity-induced reduction of myofibrillar Ca2+ sensitivity in mouse skeletal muscle is reversed by dithiothreitol. J Physiol 571:191–200

    Article  PubMed  CAS  Google Scholar 

  • Motelica I (1969) Urinary excretion of catecholamines and vanilmandelic acid in rats exposed to cold. Acta Physiol Scand 76:393–395

    Article  PubMed  CAS  Google Scholar 

  • Murrant CL, Reid MB (2001) Detection of reactive oxygen and reactive nitrogen species in skeletal muscle. Microsc Res Tech 55:236–248

    Article  PubMed  CAS  Google Scholar 

  • Paolini C, Quarta M, Nori A, Boncompagni S, Canato M, Volpe P, Allen PD, Reggiani C, Protasi F (2007) Reorganized stores and impaired calcium handling in skeletal muscle of mice lacking calsequestrin-1. J Physiol 583:767–784

    Article  PubMed  CAS  Google Scholar 

  • Pate E, Cooke R (1989) Addition of phosphate to active muscle fibers probes actomyosin states within the powerstroke. Pflügers Arch 414:73–81

    Article  PubMed  CAS  Google Scholar 

  • Polkey MI, Moxham J (2001) Clinical aspects of respiratory muscle dysfunction in the critically ill. Chest 119:926–939

    Article  PubMed  CAS  Google Scholar 

  • Posterino GS, Lamb GD, Stephenson DG (2000) Twitch and tetanic force responses and longitudinal propagation of action potentials in skinned skeletal muscle fibres of the rat. J Physiol 527:131–137

    Article  PubMed  CAS  Google Scholar 

  • Reiken S, Lacampagne A, Zhou H, Kherani A, Lehnart SE, Ward C, Huang F, Gaburjakova M, Gaburjakova J, Rosemblit N, Warren MS, He KL, Yi GH, Wang J, Burkhoff D, Vassort G, Marks AR (2003) PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J Cell Biol 160:919–928

    Article  PubMed  CAS  Google Scholar 

  • Rossignol R, Letellier T, Malgat M, Rocher C, Mazat JP (2000) Tissue variation in the control of oxidative phosphorylation: implication for mitochondrial diseases. Biochem J 347:45–53

    Article  PubMed  CAS  Google Scholar 

  • Roth J, Zeisberger E, Schwandt HJ (1988) Influence of increased catecholamine levels in blood plasma during cold-adaptation and intramuscular infusion on thresholds of thermoregulatory reactions in guinea-pigs. J Comp Physiol [B] 157:855–863

    Article  CAS  Google Scholar 

  • Rutter GA, Burnett P, Rizzuto R, Brini M, Murgia M, Pozzan T, Tavaré JM, Denton RM (1996) Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: significance for the regulation of pyruvate dehydrogenase activity. Proc Natl Acad Sci U S A 93:5489–5494

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH (2006) Mitochondrial disease. Lancet 368:70–82

    Article  PubMed  CAS  Google Scholar 

  • Silva JP, Shabalina IG, Dufour E, Petrovic N, Backlund EC, Hultenby K, Wibom R, Nedergaard J, Cannon B, Larsson NG (2005) SOD2 overexpression: enhanced mitochondrial tolerance but absence of effect on UCP activity. EMBO J 24:4061–4070

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Reid MB (2006) Redox modulation of contractile function in respiratory and limb skeletal muscle. Respir Physiol Neurobiol 151:229–241

    Article  PubMed  CAS  Google Scholar 

  • Supinski GS, Callahan LA (2005) Diaphragmatic free radical generation increases in an animal model of heart failure. J Appl Physiol 99:1078–1084

    Article  PubMed  Google Scholar 

  • Supinski G, Stofan D, Callahan LA, Nethery D, Nosek TM, DiMarco A (1999) Peroxynitrite induces contractile dysfunction and lipid peroxidation in the diaphragm. J Appl Physiol 87:783–791

    PubMed  CAS  Google Scholar 

  • Tarnopolsky MA, Raha S (2005) Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc 37:2086–2093

    Article  PubMed  CAS  Google Scholar 

  • Thorburn DR (2004) Mitochondrial disorders: prevalence, myths and advances. J Inherit Metab Dis 27:349–362

    Article  PubMed  CAS  Google Scholar 

  • Thorburn DR, Sugiana C, Salemi R, Kirby DM, Worgan L, Ohtake A, Ryan MT (2004) Biochemical and molecular diagnosis of mitochondrial respiratory chain disorders. Biochim Biophys Acta 1659:121–128

    Article  PubMed  CAS  Google Scholar 

  • Tinel H, Cancela JM, Mogami H, Gerasimenko JV, Gerasimenko OV, Tepikin AV, Petersen OH (1999) Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca2+ signals. EMBO J 18:4999–5008

    Article  PubMed  CAS  Google Scholar 

  • Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, Khvorostov I, Spelbrink JN, Wibom R, Jacobs HT, Larsson NG (2005) Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci U S A 102:17993–17998

    Article  PubMed  CAS  Google Scholar 

  • Ward CW, Reiken S, Marks AR, Marty I, Vassort G, Lacampagne A (2003) Defects in ryanodine receptor calcium release in skeletal muscle from post-myocardial infarct rats. FASEB J 17:1517–1519

    PubMed  CAS  Google Scholar 

  • Westerblad H, Allen DG (1996) Mechanisms underlying changes of tetanic [Ca2+]i and force in skeletal muscle. Acta Physiol Scand 156:407–416

    Article  PubMed  CAS  Google Scholar 

  • Westerblad H, Duty S, Allen DG (1993) Intracellular calcium concentration during low-frequency fatigue in isolated single fibers of mouse skeletal muscle. J Appl Physiol 75:382–388

    PubMed  CAS  Google Scholar 

  • Westerblad H, Bruton JD, Allen DG, Lännergren J (2000) Functional significance of Ca2+ in ­long-lasting fatigue of skeletal muscle. Eur J Appl Physiol 83:166–174

    Article  PubMed  CAS  Google Scholar 

  • Whipple RH, Wolfson LI, Amerman PM (1987) The relationship of knee and ankle weakness to falls in nursing home residents: an isokinetic study. J Am Geriatr Soc 35:13–20

    PubMed  CAS  Google Scholar 

  • Wredenberg A, Wibom R, Wilhelmsson H, Graff C, Wiener HH, Burden SJ, Oldfors A, Westerblad H, Larsson NG (2002) Increased mitochondrial mass in mitochondrial myopathy mice. Proc Natl Acad Sci U S A 99:15066–15071

    Article  PubMed  CAS  Google Scholar 

  • Wredenberg A, Freyer C, Sandström ME, Katz A, Wibom R, Westerblad H, Larsson NG (2006) Respiratory chain dysfunction in skeletal muscle does not cause insulin resistance. Biochem Biophys Res Commun 350:202–207

    Article  PubMed  CAS  Google Scholar 

  • Zhang SJ, Bruton JD, Katz A, Westerblad H (2006) Limited oxygen diffusion accelerates fatigue development in mouse skeletal muscle. J Physiol 572:551–559

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Håkan Westerblad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Westerblad, H., Place, N., Yamada, T. (2010). Mechanisms of Skeletal Muscle Weakness. In: Rassier, D. (eds) Muscle Biophysics. Advances in Experimental Medicine and Biology, vol 682. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6366-6_16

Download citation

Publish with us

Policies and ethics