Skip to main content

Artificial Retina IC

  • Chapter
  • First Online:
Bio-Medical CMOS ICs

Part of the book series: Integrated Circuits and Systems ((ICIR))

Abstract

Artificial retina or, in general, artificial vision, is a prosthesis device to regain vision for the blind. The similar sensory prosthesis device is an artificial cochlea, which has been successfully developed and widely used in many deaf patients in the worldwide to regain sound. Now in the world, a number of research and development on artificial reina [17] are progressing and commercial products will be produced commercially in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asher A, Segal AW, Baccus AS, Yaroslavsky PL, Palanker D (2007) Image processign for a high-resolution optoelectronic retinal prosthesis. IEEE Trans Biomed Eng. 54(6):993–1004, July 2007

    Article  Google Scholar 

  2. Brindley GS, WS Lewin (1968) The visual sensations produced by electrical stimulation of the medical occiital cortex. J Physiol 194(2):54–59, Feb 1968

    Google Scholar 

  3. Cha K, Horch WK, Normann AR (1988) Mobility performance with a pixelized vision system. Vision Res 32(7):1367–1372

    Article  Google Scholar 

  4. Chaia X, Li U, Wu K, Zhou C, Caho P, Ren Q (2008) C-sight visual prostheses for the blind—optic nerve stimulation with penetrating electrode array. IEEE Eng Med Bio Mag 27(5):20–28, Sep–Nov 2008

    Article  Google Scholar 

  5. Chow YA, Chow YV, Packo K, Pollack J, Peyman G, Schuchard R (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch. Ophthalmol 122(4):460–469

    Article  Google Scholar 

  6. Demosthenous A, Triantis FI, Liu X (2008) Circuits for implantable neural recording and stimulation, chapter 11. Artech House, Inc., Norwood, MA

    Google Scholar 

  7. Dobelle HW (2000) Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J.(Am Soc Artif Inter Organs J.), 46:3–9

    Google Scholar 

  8. Dollberg A, Graf GH, H¨offlinger B, Nisch W, DJS Spuentrup, Schumacher K (2003) Zrenner E. A Fully Testable Retinal Implant. In: Proceedings of International Conference on. Biomedical Engineering pp 255–260, Salzburg, June 2003

    Google Scholar 

  9. Franks W, Schenker I, Schmutz P, Hierlemann A (2005) Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans Biomed Eng 52(7):1295–1302, July 2005

    Article  Google Scholar 

  10. Fujikado T, Morimoto T, Kanda H, Kusaka S, Nakauchi K, Ozawa M, Matsushita K, Sakaguchi H, Ikuno Y, Kamei M, Tano Y (2007) Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal transretinal stimulation in patients with retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 245:1411–1419

    Article  Google Scholar 

  11. Furumiya T, Ng DC, Yasuoka K, Kagawa K, Tokuda T, Nunoshita M, Ohta J (2006) Functional verification of pulse frequency modulation-based image sensor for retinal prosthesis by in vitro electrophysiological experiments using frog retina. Biosensors Bioelectron, 21(7):1059–1068, Jan 2006

    Article  Google Scholar 

  12. The Eye Diseases Prevalence Research Group. Causes and prevalence of visual impairment. among adults in the United States. Arc Ophthalmol 122(4):477–485, April 2004

    Google Scholar 

  13. Hopkinson RG, Goodman MT, Prince RS (2004) A guide to the use and calibration of detector arrya equipment. SPIE Press, Bellingham, Washington

    Google Scholar 

  14. Hornig R, Laube T, Walter P, Velikay-Parel M, Bornfeld N, Feucht M, Akguel H, R¨ossler G, Alteheld N, Notarp DL, Wyatt J, Richard G (2005) A method and technical equipment for an acute human trial to evaluate retinal implant technology. J Neural Eng 2(1):S129–S134

    Article  Google Scholar 

  15. Humayun SM, Prince M, de Juan E, Barron Y, Moskowitz M, Klock BI, Milam HA (1999). Morphometric analysis of the extramacular retina from postmorten eyes with retinitis pigmentosa. Invest Ophthalmol Visual Sci 40:143–148

    Google Scholar 

  16. Humayun SM, Weiland DJ, Fujii YG, Greenberg R, Williamson R, Little J, Cimmarusti V, Boeme VG, Dagnelie G,de Juan Jr. E (2003) Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 43:2573–2581

    Google Scholar 

  17. Rizzo FJ III, Snebold L, Kenny M (2007). Development of a visual prosthesis: a review of the field. Human Press Inc., Totowa, NJ

    Google Scholar 

  18. Rizzo FJ III, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Methods and perceptual Thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Visual Sci 44(12):5355–5361, Dec 2003

    Article  Google Scholar 

  19. Kagawa K, Yasuoka K, Ng DC, Furumiya T, Tokuda T, Ohta J, Nunoshita M (2004). Pulsedomain digital image processing for vision chips employing low-voltage operation in deepsubmicron technologies. IEEE Selct Topic Quantum Electron 10(4):816–828, July 2004

    Article  Google Scholar 

  20. Kamei M, Fujikado T, Kanda H, Morimoto T, Nakauchi K, Sakaguchi H, Ikuno Y, Ozawa M, Kusaka S, Tano Y (2006) Suprachoroidal-transretinal stimulation (sts) artificial vision system for patients with retinitis pigmentosa. Invest. Ophthalmol Visual Sci 47:E-Abstract 1537

    Google Scholar 

  21. Kanda H, Morimoto T, Fujikado T, Tano Y, Fukuda Y, Sawai H (2004). Electrophysiological studies of the feasibility of suprachoroidal-transretinal stimulation for artificial vision in normal and RCS rats. Invest Ophthalmol Visual Sci 45(2):560–566

    Article  Google Scholar 

  22. Lehmann T, Woodburn R (1999). Biologically-inspired learning in pulsed neural networks. In: Cauwenberghs G, Bayoumi AM (eds) Learning on silicon: adaptive VLSI neural Systems. Kluwer Academic Pub, Norwell, MA, pp 105–130

    Google Scholar 

  23. Liu W, Humayun SM (2004). Retinal Prosthesis. In: Dig. Tech. Papers Int’l Solid-State Circuits Conf. (ISSCC), pp 218–219, San Francisco, CA, Feb 2004

    Google Scholar 

  24. Liu W, Vichienchom K, Clements M, DeMarco CS, Hughes C, McGucken E, Humayun SM, de Juan E, Weiland DJ, Greenberg R (2000). A neuro-stimulus chip with telemetry unit for retinal prosthetic device. IEEE J. Solid-State Circuits 35:1487–1497, Oct 2000

    Article  Google Scholar 

  25. Maass W (1999). In: Bishop MC (ed). Pulsed neural networks. The MIT Press, Cambridge, MA

    Google Scholar 

  26. Research Report by Ministry of Health, Labour and Welfare of Japan, 2005

    Google Scholar 

  27. Mortimer TJ (1999) Electrical excitation of nerve, chapter 3. Prentice-Hall, Inc., Englewood Cliffs,NJ

    Google Scholar 

  28. Ng DC, Furumiya T, Yasuoka K, Uehara A, Kagawa K, Tokuda T, Nunoshita M, Ohta J (2006) Pulse frequency modulation-based cmos image sensor for subretinal stimulation. IEEE Trans Circuits Sys II, 53(6):487–491, June 2006

    Article  Google Scholar 

  29. Nicholls GJ, Martin RA, Wallace GB, Fuchs AP (2001). From neuro to brain, 4th edn. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  30. Normann RA, Greger BA, Paul House, Romero SF, Fernandez FPE (2009) Toward the development of a cortically based visual neuroprosthesis. J Neural Eng 6(2):1–8

    Google Scholar 

  31. Ohta J (2007) Smart CMOS image sensors and applications. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  32. Ohta J, Tokuda T, Hiyama K, Sawamura S, Sasagawa K, Nishida K, Kitaguchi Y, Kamei M, Fujikado T, Tano Y (2009). Retinal stimulator embedded with light-sensing function in distributed microchip architecture for subretinal implantation. In: International Image Sensor Workshop, Bergen, Norway, June 2009

    Google Scholar 

  33. Ohta J, Tokuda T, Kagawa K, Furumiya T, Uehara A, Terasawa Y, Ozawa M, Fujikado T, Tano Y (2006). Silicon LSI-based smart stimulators for retinal prosthesis. IEEE Eng Med Biol Mag 25(5):47–59, Oct 2006

    Article  Google Scholar 

  34. Ohta J, Tokuda T, Kagawa K, Sugitani S, Taniyama M, Uehara A, Terasawa Y, Nakauchi K, Fujikado T, Tano Y (2007). Laboratory investigation of microelectronics-based stimulators for large-scale suprachroidal transretinal stimulation (STS). Neural J Eng.,4(1):S85–S91

    Article  Google Scholar 

  35. Ohta J, Tokuda T, Kagawa K, Terasawa Y, Ozawa M, Fujikado T, Tano Y (2007) Large-scale integration-based stimulus electrodes for retinal prosthesis. Springer, New York, NY

    Google Scholar 

  36. Ortmanns M, Rocke A, Gehrke M, Tiedtke H-J (2007) A 232-channel epiretinal stimulator ASIC. IEEE J Solid-State Circuits 42(12):2946–2959, Dec 2007

    Article  Google Scholar 

  37. Palanker D, Huie P, Vankov A, Asher A, Baccus S (2005). Towards high-resolution optoelectronic retinal prosthesis. BIOS, 5688A

    Google Scholar 

  38. Robblee SL Rose LT (1990) Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation, chapter 2. Prentice-Hall, Inc., Englewood Cliffs, NJ

    Google Scholar 

  39. Roessler G, Laube T, Brockmann C, Kirschkamp T, Mazinani B, Goertz M, Koch C, Krisch I, Sellhaus B, Trieu KH, Weis J, Bornfeld N, Ro”othgen H, Messner A (2009) In: Mokwa W, Walter P (eds). Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 Prospective Clinical Trial Invest Ophthalmol Visual Sci 50(6):3003–3008, June 2009

    Google Scholar 

  40. Rothermell A, Liu L, Aryan PN, Fischer M, Wuenschmann J, Kibbel S, Harscher A (2009). A CMOS chipwith active pixel arrya and spceific test features for subretinal implantation. IEEE J. Solid-State Circuits, 44(1):290–300, Jan 2009

    Article  Google Scholar 

  41. Rothermell A, Wieczorek V, Liu L, Stett A, Gerhardt M, Harscher A, Kibbel S (2008) A 1600-pixel subretinal chip with dc-free terminals and ±2v supply optimized for long lifetime and high stimulation efficiency. In Digest Technical Papers Internationall Solid-State Circuits Conference (ISSCC), San Francisco, CA, Feb 2008

    Google Scholar 

  42. Sakaguchi H, Kamei M, Fujikado T, Yonezawa E, Ozawa M, Cecilia-Gonzalez C, Ustariz-Gonzalez O, Quiroz-Mercado H, Tano Y (2008) Artificial vision by direct optic nerve electrode (AV-DONE) for a blind patient with retinitis pigmentosa. Invest Ophthalmol Visual Sci 49:S4044

    Google Scholar 

  43. Santos A, Humayun SM, de Juan, Greenburg JR, Marsh JM, Klock BI, Milam AH (1996) Preservation of the inner retina in retinitis pigmentosa; a morphometric analysis. Arc. Ophthalmol 114:40–46, 1996

    Google Scholar 

  44. Schwarz M, Hauschild R, Hosticka JB, Huppertz J, Kneip T, Kolnsberg S, Ewe L, Trieu KH (1999) Single-Chip CMOS Image sensors for a retina implant system. IEEE Trans.Circuits Sys II, 46(7):870–877, July 1999

    Article  Google Scholar 

  45. Suaning JG, Lovell HN (2001) CMOS neurostimulation ASIC with 100 channels, scaleable output, and bidirectional radio-frequency telemetry. IEEE Trans Biomed Eng 48(2):248–260, Feb 2001

    Article  Google Scholar 

  46. Tanaka T, Sato K, Komiya K, Kobayashi T, Watanabe T, Fukushima T, Tomita H, Kurino H, Tamai M, Koyanagi M (2007) Fully implantable retinal prosthesis chip with photodetector and stimulus current generator. In: Technology in Digest International Electron Devices Meeting (IEDM), pp 1015–1018, Washington, DC, December 2007

    Google Scholar 

  47. Terasawa Y, Tashiro H, Uehara A, Saito T, Ozawa M, Tokuda T, Ohta J (2006) The development of a multichnanel electrode array for retinal prosthesis. J Artif Organs 9(4):263–266, 2006

    Article  Google Scholar 

  48. Terasawa Y, Uehara A, Yonezawa E, Saitoh T, Shodo K, Ozawa M, Tano Y, Ohta J (2008). A visual prosthesis with 100 electrodes featuring wireless signals and wireless power transmission. IEICE Electronics Express, 5(15):574–580, 2008

    Article  Google Scholar 

  49. Theogarajan SL (2008). A low-power fully implantable 15-channel retinal stimulator chip. IEEE J. Solid-State Circuits, 43(10):2322–2377, Oct 2008

    Article  Google Scholar 

  50. Tokuda T, Asano R, Sugitani S, Taniyama M, Terasawa Y, Nunoshita M, Nakauchi K, Fujikado T, Tano Y, Ohta J (2008) Retinal stimulation on rabbit using CMOS-based multichip flexible stimulator toward retinal prosthesis. Jpn J Appl Phys 47(4B):3220–3225, April 2008

    Article  Google Scholar 

  51. Tokuda T, Hiyama K, Sawamura S, Sasagawa K, Terasawa Y, Nishida K, Kitaguchi Y, Fujikado T, Tano Y, Ohta J (2009) CMOS-based multichip networked flexible retinal stimulator designed for image-based retinal prosthesis. IEEE Trans Electron Devices 56(11):2577–2585

    Article  Google Scholar 

  52. Tokuda T, Pan YL, Uehara A, Kagawa K, Nunoshita M, Ohta J (2009) Flexible and extendible neural interface device based on cooperative multi-chip CMOS LSI architecture. Sensors & Actuators A, 122(1):88–98, July 2005

    Google Scholar 

  53. Tokuda T, Sugitani S, Taniyama M, Uehara A, Terasawa Y, Kagawa K, Nunoshita M, Tano Y, Ohta J (2007) Fabrication and validation of a multi-chip neural stimulator for in vivo experiments toward retinal prosthesis. Jpn J Appl Phys 46(4B):2792–2798, April 2007

    Article  Google Scholar 

  54. Veraart C, Wanet-Defalque MC, Gerard B, Vanlierde A, Delbeke J (2003) Pattern recognition with the optic nerve visual prosthesis. Artif Organs, 11:996–1004, 2003

    Article  Google Scholar 

  55. Wandell AB (1995) Foundations of vision. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  56. http://www.who.int/mediacentre/factsheets/fs282/en/index.html

  57. Wise DK, Anderson JD, Hetke FJ, Kipke RD, Najafi K (2004) Wireless implantable microsystems:high-density electronic interfaces to the nervous system. IEEE Proc 92(1):76–97, Jan 2004

    Article  Google Scholar 

  58. Zrenner E (2002) Will retinal implants restore vision? Science 295:1022–1025, Feb 2002

    Article  Google Scholar 

Download references

Acknowledgments

The part of this research was supported by the Strategic Research Program for Brain Sciences, MEXT, Japan, by the Asahi Glass Foundation, and by a Health and Labour Sciences Research Grant, Japan. I would like to thank late Prof. Yasuo Tano and Porf. Takashi Fujikado of Osaka University, the member of Vision Institute of Nidek Co. Ltd., and Prof. Takashi Tokuda of Nara Institute of Scinece and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ohta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ohta, J. (2011). Artificial Retina IC. In: Yoo, HJ., van Hoof, C. (eds) Bio-Medical CMOS ICs. Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6597-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6597-4_14

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6596-7

  • Online ISBN: 978-1-4419-6597-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics