Skip to main content

Low-Power ADCs for Bio-Medical Applications

  • Chapter
  • First Online:
Bio-Medical CMOS ICs

Part of the book series: Integrated Circuits and Systems ((ICIR))

  • 2725 Accesses

Abstract

In this chapter, recent innovations reducing power consumption in A/D converters will be discussed. Indeed, in many applications the function performing a conversion from the analog continuous-time domain to the discrete-time digital domain takes a large proportion of the power consumption. Especially for biomedical systems an aggressive reduction in power consumption of all blocks including A/D converters opens up a window for higher performance and more versatile solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van de Plassche R (2003) CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd edn. Kluwer, Dordrecht

    MATH  Google Scholar 

  2. Walden RH (1999) Analog-to-digital converter survey and analysis. J Select Areas Commun 17(4):539–550, April 1999

    Article  Google Scholar 

  3. Craninckx J, Van der Plas G (2007) A 65 fJ/Conversion-Step 0-to-50 Ms/s 0-to-0.7 mW 9b Charge sharing SAR ADC in 90 nm Digital CMOS. ISSCC Dig Tech Papers, pp. 246–247, Feb 2007

    Google Scholar 

  4. van Elzakker M, van Tuijl E,.Geraedts P, Schinkel D, Klumperink E, Nauta B (2008) A 1.9 μW 4.4fj/conversion-step 10b 1 ms/s charge-redistribution ADC. In: Proceedings of Digest of Technical Papers. IEEE International Solid-State Circuits Conference ISSCC 2008, p 244–610, 3–7 Feb 2008

    Google Scholar 

  5. Van der Plas G, Verbruggen B (2008) A 150 MS/s 133 μW 7 bit ADC in 90 nm digital CMOS. IEEE J Solid-State Circuits, 43(12):2631–2640, Dec 2008

    Article  Google Scholar 

  6. Agnes A, Bonizzoni E, Malcovati P, Maloberti F (2008) A 9.4-ENOB 1 V 3.8 μW 100 kS/s SAR ADC with time-domain comparator. In: Proceedings of Digest of Technical Papers. IEEE International Solid-State Circuits Conference ISSCC 2008, pages 246–610, 3–7 Feb 2008

    Google Scholar 

  7. Boulemnakher M, Andre E, Roux J, Paillardet F (2008) A 1.2 V 4.5 mW 10b 100 MS/s pipeline ADC in a 65 nm CMOS. In: Proceedings Digest of Technical Papers. IEEE International Solid-State Circuits Conference ISSCC 2008, pages 250–611, 3–7 Feb 2008

    Google Scholar 

  8. Giannini V, Nuzzo P, Chironi V, Baschirotto A, Van der Plas G, Craninckx J (2008) A 820 μW 9b 40 MS/s Noise Tolerant Dynamic SAR ADC in 90 nm Digital CMOS. ISSCC Digest. of Technical Papers, pp. 238-239, Feb 2008

    Google Scholar 

  9. Abo M, Gray P (1999) A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE J Solid State Circuits 34(5):599-606, May 1999

    Article  Google Scholar 

  10. Van der Plas G, Decoutere S, Donnay S (2006) A 0.16 pF/conversion-step 2.5 mW 1.25 GS/s 4b ADC in a 90 nm digital CMOS process. ISSCC Digest of Technical Papers, pp. 566–567, Feb 2006

    Google Scholar 

  11. Van den Bosch A (2004) Static and dynamic performance limitations for high speed D/A converters. ISBN 9781402077616, Springer

    Google Scholar 

  12. Scholtens P, Vertregt M (2002) A 6-b 1.6-Gsamples Flash ADC in 0.18 μm CMOS using averaging termination. IEEE JSSC 37(12):1599–1609, Dec 2002

    Google Scholar 

  13. Lin J, Haroun B (2002) An embedded 0.8 V/480 μW 6B/22 MHz flash ADC in 0.13-μm Digital CMOS process using a nonlinear double interpolation technique. IEEE JSSC 37(12)1610–1617, Dec 2002

    Google Scholar 

  14. Draxelmayr D (2004) A 6b 600 MHz 10 mW ADC Array in Digital 90 nm CMOS. IEEE digest of ISSCC 2004, paper 14.7

    Google Scholar 

  15. Ginsburg BP, Chandrakasan AP (2008) Highly Interleaved 5b 250 MS/s ADC with redundant channels in 65 nm CMOS. ISSCC Digest of Technical Papers, pp. 240–241, Feb. 2008

    Google Scholar 

  16. Chen S, Brodersen R (2006) A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS. IEEE J Solid-State Circuits 41(12)2669–2680, Dec 2006

    Article  Google Scholar 

  17. Brooks L, Lee H-S (2007) A zero-crossing-based 8-bit 200 MS/s pipelined ADC. IEEE JSSC 42(12):1896–1906, Dec 2007

    Google Scholar 

  18. Van der Plas G, Verbruggen B (2008) A 150 MS/s 133 μW 7b ADC in 90 nm digital CMOS Using a comparator-based asynchronous binary-search sub-ADC. IEEE Digest of ISSCC 2008, paper 12.3

    Google Scholar 

  19. Kobayashi T et al (1993) A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture. IEEE JSSC 28(4):523–527, April 1993

    Google Scholar 

  20. Nuzzo P et al. (2008) Noise analysis of regenerative comparators for reconfigurable ADC architectures. IEEE Trans Circuits Sys I: Fundam Theory Appl 55(6): 1441–1454, July 2008

    Article  MathSciNet  Google Scholar 

  21. Nuzzo P et al. (2006) Efficient calibration through statistical behavioral modeling of a high-speed low-power ADC. Proceedings of PRIME, pp. 297–300, Jun 2006

    Google Scholar 

  22. Daly D, Chandrakasan A (2008) A 6b 0.2-to-0.9 V highly digital flash ADC with comparator redundancy. ISSCC Digest of Technical Papers, pp. 554–555, Feb 2008

    Google Scholar 

  23. Petrescu V et al. (2006) A signal-integrity self-test concept for debugging nanometer CMOS ICs. ISSCC Digest of Technical Papers, pp. 544–545, Feb 2006

    Google Scholar 

  24. McCreary J, Gray P (1975) All-MOS charge redistribution Analog-to-Digital conversion techniques—Part I. IEEE J Solid-State Circuits 10(6):371–379, Dec 1975

    Article  Google Scholar 

  25. Verbruggen B et al. (2008) A 2.2 mW 5b 1.75 GS/s Folding Flash ADC in 90 nm Digital CMOS. ISSCC Digest of Technical Papers, pp. 252–253, Feb 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Craninckx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Craninckx, J., Van der Plas, G. (2011). Low-Power ADCs for Bio-Medical Applications. In: Yoo, HJ., van Hoof, C. (eds) Bio-Medical CMOS ICs. Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6597-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6597-4_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6596-7

  • Online ISBN: 978-1-4419-6597-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics