Skip to main content
  • 1038 Accesses

Abstract

During the last years, the field of microelectronics has been moving to nanoelectronics. This development provides opportunities for new products and applications. However, development is no longer possible by simply downscaling technical parameters as used in the past. Approaching the physical and technological limits of electronic devices, new effects appear and have to be considered in the design process. Due to the extreme miniaturization in microelectronics, even small variations in the manufacturing process may lead to parameter variations which can make a circuit unusable. A new aspect for digital designers is the occurrence of essential variations not only from die to die but also within a die. Therefore, inter-die and intra-die variations have to be taken into account not only in the design of analog circuits as already done, but also in the digital design process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International technology roadmap for semiconductors, executive summary. http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_ExecSum.pdf (2009)

  2. Dennard, R., Gaensslen, F., Rideout, V., Bassous, E., LeBlanc, A.: Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State Circuits 9(5), 256–268 (1974)

    Article  Google Scholar 

  3. Meer, P., van Staveren, A.R., M., A.H.: Low-Power Deep Sub-Micron CMOS Logic, 1 edn. Springer (2004)

    Google Scholar 

  4. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proceedings of the IEEE, 91(2), 305–327 (2003)

    Article  Google Scholar 

  5. Bohr, M.: A 30 year retrospective on dennard’s MOSFET scaling paper. IEEE Solid-State Circuits Newsletter 12, 11–13 (2007)

    Article  Google Scholar 

  6. Chen, T.C.: Challenges for silicon technology scaling in the nanoscale era. In: Proceedings of the Solid State Device Research Conference, 2009. ESSDERC ’09, pp. 1–7 (2009)

    Google Scholar 

  7. Dennard, B.: (interview) discussing dram and cmos scaling with inventor bob dennard. IEEE Design & Test of Computers 25(2), 188–191 (2008)

    Article  Google Scholar 

  8. Mukhopadhyay, S., Roy, K.: Modeling and estimation of total leakage current in nano-scaled CMOS devices considering the effect of parameter variation. In: Proceedings of the 2003 International Symposium on Low Power Electronics and Design ISLPED ’03, pp. 172–175 (2003)

    Google Scholar 

  9. Rabaey, J.: Low Power Design Essentials. Springer, Boston, MA (2009). DOI 10. 1007/978-0-387-71713-5

    Google Scholar 

  10. Srivastava, A., Blaauw, D., Sylvester, D.: Statistical Analysis and Optimization for VLSI: Timing and Power. Springer Science+Business Media Inc, Boston, MA (2005). DOI 10.1007/b137645

    Google Scholar 

  11. Zhao, W., Cao, Y.: New generation of predictive technology model for sub-45 nm early design exploration. IEEE Transactions on Electron Devices 53(11), 2816–2823 (2006)

    Article  Google Scholar 

  12. Haselman, M., Hauck, S.: The future of integrated circuits: A survey of nanoelectronics. Proceedings of the IEEE 98(1), 11–38 (2010)

    Article  Google Scholar 

  13. Chiang, C.C., Kawa, J.: Design for manufacturability and yield for nano-scale CMOS. Series on integrated circuits and systems. Springer, Dordrecht (2007). DOI 10.1007/ 978-1-4020-5188-3

    Google Scholar 

  14. Kawa, J., Chiang, C., Camposano, R.: EDA challenges in nano-scale technology. In: IEEE Custom Integrated Circuits Conference CICC ’06, pp. 845–851 (2006). DOI 10.1109/CICC.2006.320844

    Google Scholar 

  15. Grabinski, W., Nauwelaers, B., Schreurs, D.e.: Transistor Level Modeling for Analog/RF IC Design, chap. PSP: An Advanced Surface-Potential-Based MOSFET Model, pp. 29–66. Springer, Dordrecht (2006)

    Google Scholar 

  16. Sharma, M., Arora, N.: OPTIMA: A nonlinear model parameter extraction program with statistical confidence region algorithms. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 12(7), 982–987 (1993)

    Article  Google Scholar 

  17. Cheng, B., Dideban, D., Moezi, N., Millar, C., Roy, G., Wang, X., Roy, S., Asenov, A.: Benchmarking statistical compact modeling strategies for capturing device intrinsic parameter fluctuations in BSIM4 and PSP. IEEE Design Test of Computers 27(2), 26–35 (2010). DOI 10.1109/MDT.2010.2

    Article  Google Scholar 

  18. Zhao, W., Liu, F., Agarwal, K., Acharyya, D., Nassif, S., Nowka, K., Cao, Y.: Rigorous extraction of process variations for 65-nm CMOS design. IEEE Transactions on Semiconductor Manufacturing 22(1), 196–203 (2009)

    Article  Google Scholar 

  19. Orshansky, M., Nassif, S., Boning, D.: Design for Manufacturability and Statistical Design. Springer (2008)

    Google Scholar 

  20. Nassif, S.: Modeling and analysis of manufacturing variations. In: IEEE Conference on Custom Integrated Circuits, pp. 223–228 (2001). DOI 10.1109/CICC.2001.929760

    Google Scholar 

  21. Li, X., Zhao, W., Cao, Y., Zhu, Z., Song, J., Bang, D., Wang, C.C., Kang, S., Wang, J., Nowak, M., Yu, N.: Pathfinding for 22nm CMOS designs using predictive technology models. In: IEEE Custom Integrated Circuits Conference CICC ’09, pp. 227–230 (2009). DOI 10.1109/CICC.2009.5280845

    Google Scholar 

  22. Zhao, W., Li, X., Nowak, M., Cao, Y.: Predictive technology modeling for 32nm low power design. In: 2007 International Semiconductor Device Research Symposium, pp. 1–2 (2007). DOI 10.1109/ISDRS.2007.4422430

    Google Scholar 

  23. Wang, V., Agarwal, K., Nassif, S., Nowka, K., Markovic, D.: A simplified design model for random process variability. IEEE Transactions on Semiconductor Manufacturing 22(1), 12–21 (2009). DOI 10.1109/TSM.2008.2011630

    Article  Google Scholar 

  24. Blaauw, D., Chopra, K., Srivastava, A., Scheffer, L.: Statistical timing analysis: From basic principles to state of the art. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27(4), 589–607 (2008). DOI 10.1109/TCAD.2007. 907047

    Article  Google Scholar 

  25. Graeb, H., Mueller, D., Schlichtmann, U.: Pareto optimization of analog circuits considering variability. In: 18th European Conference on Circuit Theory and Design ECCTD 2007, pp. 28–31 (2007). DOI 10.1109/ECCTD.2007.4529528

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Haase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Haase, J., Dietrich, M. (2012). Introduction. In: Dietrich, M., Haase, J. (eds) Process Variations and Probabilistic Integrated Circuit Design. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6621-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6621-6_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6620-9

  • Online ISBN: 978-1-4419-6621-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics