Skip to main content

Radiation Biology of Tumor and Normal Tissues

  • Chapter
  • First Online:
Evolution of Radiation Oncology at Massachusetts General Hospital
  • 951 Accesses

Abstract

For the new department, the trustees wanted a program in laboratory research on the effects of radiation on animal cells and tissues, normal and malignant, and the whole organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    LD50 is the dose that is lethal to 50% of the irradiated mice.

  2. 2.

    γ 50 is the percent point increase in response probability for a 1% increase in dose.

  3. 3.

    TGF is the ratio of RBE tumor/RBE normal tissue.

  4. 4.

    TD50 is the number of cells that transplant tumor into half of the recipients.

References

  1. Allam A, Gioioso D, Taghian A, et al. Intrinsic radiation sensitivity: no correlation with the metastatic potential of human and murine tumor cell lines. J Natl Cancer Inst. 1993;85(23):1954–7.

    Article  CAS  PubMed  Google Scholar 

  2. Au P, Daheron LM, Duda DG, et al. Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood. 2008;111(3):1302–5.

    Article  CAS  PubMed  Google Scholar 

  3. Au P, Tam J, Fukumura D, et al. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood. 2008;111(9):4551–8.

    Article  CAS  PubMed  Google Scholar 

  4. Batchelor TT, Sorensen AG, di Tomaso E, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11(1):83–95.

    Article  CAS  PubMed  Google Scholar 

  5. Baumann M, Suit HD, Sedlacek RS. Metastases after fractionated radiation therapy of three murine tumor models. Int J Radiat Oncol Biol Phys. 1990;19(2):367–70.

    Article  CAS  PubMed  Google Scholar 

  6. Bockhorn M, Jain RK, Munn LL. Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol. 2007;8(5):444–8.

    Article  CAS  PubMed  Google Scholar 

  7. Bockhorn M, Roberge S, Sousa C, et al. Differential gene expression in metastasizing cells shed from kidney tumors. Cancer Res. 2004;64(7):2469–73.

    Article  CAS  PubMed  Google Scholar 

  8. Boucher Y, Kirkwood JM, Opacic D, et al. Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Res. 1991;51(24):6691–4.

    CAS  PubMed  Google Scholar 

  9. Boucher Y, Lee I, Jain RK. Lack of general correlation between interstitial fluid pressure and oxygen partial pressure in solid tumors. Microvasc Res. 1995;50(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  10. Boucher Y, Leunig M, Jain RK. Tumor angiogenesis and interstitial hypertension. Cancer Res. 1996;56(18):4264–6.

    CAS  PubMed  Google Scholar 

  11. Brown E, McKee T, diTomaso E, et al. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med. 2003;9(6):796–800.

    Article  CAS  PubMed  Google Scholar 

  12. Brown EB, Campbell RB, Tsuzuki Y, et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med. 2001;7(7):864–8. Erratum in: Nat Med. 2001;7(9):1069.

    Article  CAS  PubMed  Google Scholar 

  13. Budach W, Taghian A, Freeman J, et al. Impact of stromal sensitivity on radiation response of tumors. J Natl Cancer Inst. 1993;85(12):988–93.

    Article  CAS  PubMed  Google Scholar 

  14. Chen Y, Taghian AG, Rosenberg AE, et al. Predictive value of histologic tumor necrosis after radiation. Int J Cancer. 2001;96(6):334–40.

    Article  CAS  PubMed  Google Scholar 

  15. Choi CH, Sedlacek RS, Suit HD. Radiation-induced osteogenic sarcoma of C3H mouse: effects of Corynebacterium parvum and WBI on its natural history and response to irradiation. Eur J Cancer. 1979;15(4):433–42.

    CAS  PubMed  Google Scholar 

  16. Clark EP, Michaels HB, Peterson EC, et al. Irradiation of mammalian cells in the presence of diamide and low concentrations of oxygen at conventional and at ultrahigh dose rates. Radiat Res. 1983;93(3):479–91.

    Article  CAS  PubMed  Google Scholar 

  17. Dahm-Daphi J, Hubbe P, Horvath F, et al. Nonhomologous end-joining of site-specific but not of radiation-induced DNA double-strand breaks is reduced in the presence of wild-type p53. Oncogene. 2005;24(10):1663–72.

    Article  CAS  PubMed  Google Scholar 

  18. Dewey WC, Hopwood LE, Sapareto SA, et al. Cellular responses to combinations of hyperthermia and radiation. Radiology. 1977;123(2):463–74.

    CAS  PubMed  Google Scholar 

  19. di Tomaso E, Capen D, Haskell A, et al. Mosaic tumor vessels: cellular basis and ultrastructure of focal regions lacking endothelial cell markers. Cancer Res. 2005;65(13):5740–9.

    Article  PubMed  Google Scholar 

  20. Duda DG, Batchelor TT, Willett CG, et al. VEGF-targeted cancer therapy strategies: current progress, hurdles and future prospects. Trends Mol Med. 2007;13(6):223–30.

    Article  CAS  PubMed  Google Scholar 

  21. Duda DG, Cohen KS, Kozin SV, et al. Evidence for incorporation of bone marrow-derived endothelial cells into perfused blood vessels in tumors. Blood. 2006;107(7):2774–6.

    Article  CAS  PubMed  Google Scholar 

  22. Duda DG, Fukumura D, Munn LL, et al. Differential transplantability of tumor-associated stromal cells. Cancer Res. 2004;64(17):5920–4.

    Article  CAS  PubMed  Google Scholar 

  23. Epp ER, Weiss H, Santomasso A. The oxygen effect in bacterial cells irradiated with high-intensity pulsed electrons. Radiat Res. 1968;34(2):320–5.

    Article  CAS  PubMed  Google Scholar 

  24. Fukumura D, Gohongi T, Kadambi A, et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA. 2001;98(5):2604–9.

    Article  CAS  PubMed  Google Scholar 

  25. Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer. 2006;6(7):521–34. Review.

    Article  CAS  PubMed  Google Scholar 

  26. Fukumura D, Ushiyama A, Duda DG, et al. Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ Res. 2003;93(9):e88–97. Erratum in: Circ Res. 2004;94(1):e16. Circ Res. 2005;96(9):e76.

    Article  CAS  PubMed  Google Scholar 

  27. Fukumura D, Xavier R, Sugiura T, et al. Tumor induction of VEGF promoter activity in stromal cells. Cell. 1998;94(6):715–25.

    Article  CAS  PubMed  Google Scholar 

  28. Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res. 2001;61(16):6020–4.

    CAS  PubMed  Google Scholar 

  29. Fukumura D, Yuan F, Endo M, et al. Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions. Am J Pathol. 1997;150(2):713–25.

    CAS  PubMed  Google Scholar 

  30. Garkavtsev I, Kozin SV, Chernova O, et al. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature. 2004;428(6980):328–32.

    Article  CAS  PubMed  Google Scholar 

  31. Gerweck LE, Gillette EL, Dewey WC. Killing of Chinese hamster cells in vitro by heating under hypoxic or aerobic conditions. Eur J Cancer. 1974;10(10):691–3.

    CAS  PubMed  Google Scholar 

  32. Gerweck LE, Gillette EL, Dewey WC. Effect of heat and radiation on synchronous Chinese hamster cells: killing and repair. Radiat Res. 1975;64(3):611–23.

    Article  CAS  PubMed  Google Scholar 

  33. Gerweck LE, Vijayappa S, Kozin S. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol Cancer Ther. 2006;5(5):1275–9.

    Article  CAS  PubMed  Google Scholar 

  34. Gerweck LE, Vijayappa S, Kurimasa A, et al. Tumor cell radiosensitivity is a major determinant of tumor response to radiation. Cancer Res. 2006;66(17):8352–5.

    Article  CAS  PubMed  Google Scholar 

  35. Griffon-Etienne G, Boucher Y, Brekken C, Jain RK, Suit HD. Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res. 1999;59(15):3776–82.

    CAS  PubMed  Google Scholar 

  36. Hagendoorn J, Padera TP, Kashiwagi S, et al. Endothelial nitric oxide synthase regulates microlymphatic flow via collecting lymphatics. Circ Res. 2004;95(2):204–9.

    Article  CAS  PubMed  Google Scholar 

  37. Halperin EC, Haas G, Dosoretz DE, et al. 1982 resident’s essay award: the immunologic effects of lymphoid irradiation in human and non-human primates: cellular changes and the potential for renal transplantation. Int J Radiat Oncol Biol Phys. 1983;9(7):1083–9.

    Article  CAS  PubMed  Google Scholar 

  38. Held KD, Epp ER, Awad S, et al. Post irradiation sensitization of mammalian cells by the thiol-depleting agent dimethyl fumarate. Radiat Res. 1991;127(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  39. Held KD, Epp ER, Clark EP, et al. Effect of dimethyl fumarate on the radiation sensitivity of mammalian cells in vitro. Radiat Res. 1988;115(3):495–502.

    Article  CAS  PubMed  Google Scholar 

  40. Hoshida T, Isaka N, Hagendoorn J, et al. Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res. 2006;66(16):8065–75.

    Article  CAS  PubMed  Google Scholar 

  41. Huang P, Allam A, Taghian A, et al. Growth and metastatic behavior of five human glioblastomas compared with nine other histological types of human tumor xenografts in SCID mice. J Neurosurg. 1995;83(2):308–15.

    Article  CAS  PubMed  Google Scholar 

  42. Huang P, Taghian A, Hsu DW, et al. Spontaneous metastasis, proliferation characteristics and radiation sensitivity of fractionated irradiation recurrent and unirradiated human xenografts. Radiother Oncol. 1996;41:73–81.

    Article  CAS  PubMed  Google Scholar 

  43. Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature. 2002;416(6878):279–80.

    Article  CAS  PubMed  Google Scholar 

  44. Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med. 2001;7(9):987–9.

    Article  CAS  PubMed  Google Scholar 

  45. Jain RK. Taming vessels to treat cancer. Sci Am. 2008;298(1):56–63.

    Article  PubMed  Google Scholar 

  46. Jain RK, di Tomaso E, Duda DG, et al. Angiogenesis in brain tumours. Nat Rev Neurosci. 2007;8(8):610–22.

    Article  CAS  PubMed  Google Scholar 

  47. Jain RK, Duda DG. Role of bone marrow-derived cells in tumor angiogenesis and treatment. Cancer Cell. 2003;3(6):515–6.

    Article  CAS  PubMed  Google Scholar 

  48. Kamoun WS, Dan Ley C, Farrar CT, et al. Edema control by cediranib, a VEGF targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol. 2009;27:2542–52.

    Article  CAS  PubMed  Google Scholar 

  49. Kashiwagi S, Izumi Y, Gohongi T, et al. NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. J Clin Invest. 2005;115:1816–27.

    Article  CAS  PubMed  Google Scholar 

  50. Kashiwagi S, Tsukada K, Xu L, et al. Perivascular nitric oxide gradients normalize tumor vasculature. Nat Med. 2008;14(3):255–7.

    Article  CAS  PubMed  Google Scholar 

  51. Kirsch DG, Dinulescu DM, Miller JB, et al. A spatially and temporally restricted mouse model of soft tissue sarcoma. Nat Med. 2007;13(8):992–7.

    Article  CAS  PubMed  Google Scholar 

  52. Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK. Tissue engineering: creation of long-lasting blood vessels. Nature. 2004;428(6979):138–9.

    Article  CAS  PubMed  Google Scholar 

  53. Kozin SV, Niemierko A, Huang P, Silva J, Doppke KP, Suit HD. Inter- and intramouse heterogeneity of radiation response for a growing paired organ. Radiat Res. 2008;170(2):264–7.

    Article  CAS  PubMed  Google Scholar 

  54. Kozin SV, Winkler F, Garkavtsev I, et al. Human tumor xenografts recurring after radiotherapy are more sensitive to anti-vascular endothelial growth factor receptor-2 treatment than treatment-naive tumors. Cancer Res. 2007;67(11):5076–82.

    Article  CAS  PubMed  Google Scholar 

  55. Lahdenranta J, Hagendoorn J, Padera TP, et al.  Endothelial nitric oxide synthase mediates lymphangiogenesis and lymphatic metastasis. Cancer Res. 2009;69:2801–8.

    Article  CAS  PubMed  Google Scholar 

  56. Lee CG, Heijn M, diTomaso E, et al. Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res. 2000;60:5565–70.

    CAS  PubMed  Google Scholar 

  57. Ling CC, Michaels HB, Epp ER, et al. Oxygen diffusion into mammalian cells following ultrahigh dose rate irradiation and lifetime estimates of oxygen-sensitive species. Radiat Res. 1978;76(3):522–32.

    Article  CAS  PubMed  Google Scholar 

  58. McDonald J, Pinkerton A, Weiss H, et al. Dosimetry for thin biological samples irradiated by nanosecond electron pulses of high intensity. Radiat Res. 1972;49(3):495–506.

    Article  CAS  PubMed  Google Scholar 

  59. McKee TD, Grandi P, Mok W, et al. Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res. 2006;66(5):2509–13.

    Article  CAS  PubMed  Google Scholar 

  60. Michaels HB, Ling CC, Epp ER, et al. Interaction of nitroimidazole sensitizers and oxygen in the radiosensitization of mammalian cells at ultrahigh dose rates. Radiat Res. 1981;85(3):567–82.

    Article  CAS  PubMed  Google Scholar 

  61. Michaels HB, Peterson EC, Epp ER. Effects of modifiers of the yield of hydroxyl radicals on the radiosensitivity of mammalian cells at ultrahigh dose rates. Radiat Res. 1983;95(3):620–36.

    Article  CAS  PubMed  Google Scholar 

  62. Mok W, Boucher Y, Jain RK. Matrix metalloproteinases-1 and -8 improve the distribution and efficacy of an oncolytic virus. Cancer Res. 2007;67(22):10664–8.

    Article  CAS  PubMed  Google Scholar 

  63. Munn LL, Dupin MM. Blood cell interactions and segregation in flow. Ann Biomed Eng. 2008;36(4):534–44.

    Article  PubMed  Google Scholar 

  64. Nagano S, Perentes JY, Jain RK, Boucher Y. Cancer cell death enhances the penetration and efficacy of oncolytic herpes simplex virus in tumors. Cancer Res. 2008;68(10): 3795–802.

    Article  CAS  PubMed  Google Scholar 

  65. Nelson GM, Padera TP, Garkavtsev I, et al. Differential gene expression of primary cultured lymphatic and blood vascular endothelial cells. Neoplasia. 2007;9(12):1038–45.

    Article  CAS  PubMed  Google Scholar 

  66. Ogawa K, Boucher Y, Kashiwagi S, et al. Influence of tumor cell and stroma sensitivity on tumor response to radiation. Cancer Res. 2007;67(9):4016–21.

    Article  CAS  PubMed  Google Scholar 

  67. Okunieff PG, Koutcher JA, Gerweck L, et al. Tumor size dependent changes in a murine fibrosarcoma: use of in vivo 31P NMR for non-invasive evaluation of tumor metabolic status. Int J Radiat Oncol Biol Phys. 1986;12(5):793–9.

    Article  CAS  PubMed  Google Scholar 

  68. Overgaard J, Suit HD. Time-temperature relationship in hyperthermic treatment of malignant and normal tissue in vivo. Cancer Res. 1979;39(8):3248–53.

    CAS  PubMed  Google Scholar 

  69. Padera TP, Kadambi A, diTomaso E, et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science. 2002;296(5574):1883–6.

    Article  CAS  PubMed  Google Scholar 

  70. Padera TP, Stoll BR, So PT, Jain RK. Conventional and high-speed intravital multiphoton laser scanning microscopy of microvasculature, lymphatics, and leukocyte-endothelial interactions. Mol Imaging. 2002;1(1):9–15.

    Article  PubMed  Google Scholar 

  71. Padera TP, Stoll BR, Tooredman JB, et al. Pathology: cancer cells compress intratumour vessels. Nature. 2004;427(6976):695.

    Article  CAS  PubMed  Google Scholar 

  72. Pluen A, Boucher Y, Ramanujan S, et al. Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc Natl Acad Sci USA. 2001;98(8):4628–33.

    Article  CAS  PubMed  Google Scholar 

  73. Prise KM, Schettino G, Folkard M, Held KD. New insights on cell death from radiation exposure. Lancet Oncol. 2005;6(7): 520–8.

    Article  CAS  PubMed  Google Scholar 

  74. Ramsay J, Suit HD, Sedlacek R. Experimental studies on the incidence of metastases after failure of radiation treatment and the effect of salvage surgery. Int J Radiat Oncol Biol Phys. 1988;14(6):1165–8.

    Article  CAS  PubMed  Google Scholar 

  75. Roh HD, Boucher Y, Kalnicki S, et al. Interstitial hypertension in carcinoma of uterine cervix in patients: possible correlation with tumor oxygenation and radiation response. Cancer Res. 1991;51(24):6695–8.

    CAS  PubMed  Google Scholar 

  76. Romanova LY, Willers H, Blagosklonny MV, Powell SN. The interaction of p53 with replication protein A mediates suppression of homologous recombination. Oncogene. 2004;23(56):9025–33.

    Article  CAS  PubMed  Google Scholar 

  77. Rottinger EM, Sedlacek R, Suit HD. Ineffectiveness of anticoagulation in experimental radiation therapy. Eur J Cancer. 1975;11(10):743–9.

    CAS  PubMed  Google Scholar 

  78. Ruka W, Taghian A, Gioioso D, et al. Comparison between the in vitro intrinsic radiation sensitivity of human soft tissue sarcoma and breast cancer cell lines. J Surg Oncol. 1996;61(4):290–4.

    Article  CAS  PubMed  Google Scholar 

  79. Sedlacek R, Mason K. A simple and inexpensive method for maintaining a defined flora mouse colony. Lab Anim Sci. 1977;27(5 Pt 1):667–70.

    CAS  PubMed  Google Scholar 

  80. Schulte-Uentrop L, El-Awady RA, Schliecker L, Willers H, Dahm-Daphi J. Distinct roles of XRCC4 and Ku80 in non-homologous end-joining of endonuclease- and ionizing radiation-induced DNA double-strand breaks. Nucleic Acids Res. 2008;36(8):2561–9.

    Article  CAS  PubMed  Google Scholar 

  81. Shao C, Folkard M, Held KD, Prise KM. Estrogen enhanced cell-cell signaling in breast cancer cells exposed to targeted irradiation. BMC Cancer. 2008;8:184.

    Article  PubMed  CAS  Google Scholar 

  82. Shevkoplyas SS, Yoshida T, Munn LL, Bitensky MW. Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal Chem. 2005;77(3):933–7.

    Article  CAS  PubMed  Google Scholar 

  83. Silobrcic V, Zietman AL, Ramsay JR, et al. Residual immunity of athymic NCr/Sed nude mice and the xenotransplantation of human tumors. Int J Cancer. 1990;45(2):325–33.

    Article  CAS  PubMed  Google Scholar 

  84. Stroh M, Zimmer JP, Duda DG, et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med. 2005;11(6):678–82.

    Article  CAS  PubMed  Google Scholar 

  85. Suit HD, Gallager HS. Intact tumor cells in irradiated tissue. Arch Pathol. 1964;78:648–51.

    CAS  PubMed  Google Scholar 

  86. Suit HD, Sedlacek R, Silver G, et al. Therapeutic gain factors for fractionated radiation treatment of spontaneous murine tumors using fast neutrons, photons plus O2(1) or 3 ATA, or photons plus misonidazole. Radiat Res. 1988;116(3):482–502.

    Article  CAS  PubMed  Google Scholar 

  87. Sun C, Jain RK, Munn LL. Non-uniform plasma leakage affects local hematocrit and blood flow: implications for inflammation and tumor perfusion. Ann Biomed Eng. 2007;35(12):2121–9.

    Article  PubMed  Google Scholar 

  88. Taghian A, Budach W, Zietman A, et al. Quantitative comparison between the transplantability of human and murine tumors into the brain of NCr/Sed-nu/nu nude and severe combined immunodeficient mice. Cancer Res. 1993;53(20):5018–21.

    CAS  PubMed  Google Scholar 

  89. Tang W, Willers H, Powell SN. p53 directly enhances rejoining of DNA double-strand breaks with cohesive ends in gamma-irradiated mouse fibroblasts. Cancer Res. 1999;59(11):2562–5.

    CAS  PubMed  Google Scholar 

  90. Todoroki T, Suit HD. Therapeutic advantage in preoperative single-dose radiation combined with conservative and radical surgery in different-size murine fibrosarcomas. J Surg Oncol. 1985;29(4):207–15.

    Article  CAS  PubMed  Google Scholar 

  91. Tong RT, Boucher Y, Kozin SV, et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004;64(11):3731–6.

    Article  CAS  PubMed  Google Scholar 

  92. Tsuzuki Y, Fukumura D, Oosthuyse B, Koike C, Carmeliet P, Jain RK. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha--> hypoxia response element--> VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. 2000;60(22):6248–52.

    CAS  PubMed  Google Scholar 

  93. Tyrrell JA, di Tomaso E, Fuja D, et al. Robust 3-D modeling of vasculature imagery using superellipsoids. IEEE Trans Med Imaging. 2007;26(2):223–37.

    Article  PubMed  Google Scholar 

  94. Urano M, Goitein M, Verhey L, et al. Relative biological effectiveness of a high energy modulated proton beam using a spontaneous murine tumor in vivo. Int J Radiat Oncol Biol Phys.

    Google Scholar 

  95. Urano M, Kahn J, Kenton LA. Thermochemotherapy (combined cyclophosphamide and hyperthermia) with or without hyperglycemia as an adjuvant to radiotherapy. Int J Radiat

    Google Scholar 

  96. Urano M, Overgaard M, Suit H, Dunn P, Sedlacek R. Enhancement by Corynebacterium parvum of the normal and tumor tissue response to hyperthermia. Cancer Res. 1978;38(3):862–4. 1980;6(9):1187–93.

    CAS  PubMed  Google Scholar 

  97. Urano M, Verhey LJ, Goitein M, et al. Relative biological effectiveness of modulated proton beams in various murine tissues. Int J Radiat Oncol Biol Phys. 1984;10(4):509–14. Oncol Biol Phys. 1986;12(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  98. Ventura A, Kirsch DG, McLaughlin ME, et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445(7128):661–5.

    Article  CAS  PubMed  Google Scholar 

  99. Wang ZZ, Au P, Chen T, et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol. 2007;25(3):317–8.

    Article  CAS  PubMed  Google Scholar 

  100. Willers H, Husson J, Lee LW, et al. Distinct mechanisms of non-homologous end joining in the repair of site-directed chromosomal breaks with non-complementary and complementary ends. Radiat Res. 2006;166(4):567–74.

    Article  CAS  PubMed  Google Scholar 

  101. Willers H, Kachnic LA, Luo CM, et al. Biomarkers and mechanisms of FANCD2 function. J Biomed Biotechnol. 2008;2008:821529.

    PubMed  Google Scholar 

  102. Willers H, McCarthy EE, Wu B, et al. Dissociation of p53-mediated suppression of homologous recombination from G1/S cell cycle checkpoint control. Oncogene. 2000;19(5):632–9.

    Article  CAS  PubMed  Google Scholar 

  103. Willett CG, Boucher Y, di Tomaso E, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10(2):145–7.

    Article  CAS  PubMed  Google Scholar 

  104. Willett CG, Urano M, Suit HD, et al. Effect of temperature on blood flow and hypoxic fraction in a murine fibrosarcoma. Int J Radiat Oncol Biol Phys. 1987;13(9):1309–12.

    Article  CAS  PubMed  Google Scholar 

  105. Winkler F, Kozin SV, Tong RT, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell. 2004;6(6):553–63.

    CAS  PubMed  Google Scholar 

  106. Xia F, Taghian DG, DeFrank JS, et al. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc Natl Acad Sci USA. 2001;98(15):8644–9.

    Article  CAS  PubMed  Google Scholar 

  107. Xu L, Fukumura D, Jain RK. Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: mechanism of low pH-induced VEGF. J Biol Chem. 2002;277(13):11368–74.

    Article  CAS  PubMed  Google Scholar 

  108. Xu L, Jain RK. Down-regulation of placenta growth factor by promoter hypermethylation in human lung and colon carcinoma. Mol Cancer Res. 2007;5(9):873–80.

    Article  CAS  PubMed  Google Scholar 

  109. Xu L, Tong R, Cochran DM, et al. Blocking platelet-derived growth factor-D/platelet-derived growth factor receptor beta signaling inhibits human renal cell carcinoma progression in an orthotopic mouse model. Cancer Res. 2005;65(13):5711–9.

    Article  CAS  PubMed  Google Scholar 

  110. Yang H, Anzenberg V, Held KD. The time dependence of bystander responses induced by iron-ion radiation in normal human skin fibroblasts. Radiat Res. 2007;168(3):292–8.

    Article  CAS  PubMed  Google Scholar 

  111. Yang H, Asaad N, Held KD. Medium-mediated intercellular communication is involved in bystander responses of X-ray irradiated normal human fibroblasts. Oncogene. 2005;24(12): 2096–103.

    Article  CAS  PubMed  Google Scholar 

  112. Zhang J, Willers H, Feng Z, et al. Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol. 2004;24(2):708–18.

    Article  CAS  PubMed  Google Scholar 

  113. Zietman AL, Suit HD, Okunieff PG, et al. The life shortening effects of treatment with doxorubicin and/or local irradiation on a cohort of young C3Hf/Sed mice. Eur J Cancer. 1991;27(6): 778–81.

    Article  CAS  PubMed  Google Scholar 

  114. Zietman AL, Suit HD, Ramsay JR, et al. Quantitative studies on the transplantability of murine and human tumors into the brain and subcutaneous tissues of NCr/Sed nude mice. Cancer Res. 1988;48(22):6510–6.

    CAS  PubMed  Google Scholar 

  115. Znati CA, Rosenstein M, Boucher Y, et al. Effect of radiation on interstitial fluid pressure and oxygenation in a human tumor xenograft. Cancer Res. 1996;56(5):964–8.

    CAS  PubMed  Google Scholar 

  116. Znati CA, Rosenstein M, Mckee TD, et al. Irradiation reduces interstitial fluid transport and increases the collagen content in tumors. Clin Cancer Res. 2003;9(15):5508–13.

    CAS  PubMed  Google Scholar 

  117. Zuang J, Zhang J, Willers H, et al. Chk2-mediated phosphorylation of BRCA1 regulates the fidelity of non-homologous end-joining. Cancer Res. 2006;66:1401–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herman D. Suit .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Suit, H.D., Loeffler, J.S. (2011). Radiation Biology of Tumor and Normal Tissues. In: Evolution of Radiation Oncology at Massachusetts General Hospital. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6744-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6744-2_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6743-5

  • Online ISBN: 978-1-4419-6744-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics