Skip to main content

Mathematical Modeling of the Human Energy Metabolism Based on the Selfish Brain Theory

  • Conference paper
  • First Online:
Advances in Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 736))

Abstract

Deregulations in the human energy metabolism may cause diseases such as obesity and type 2 diabetes mellitus. The origins of these pathologies are fairly unknown. The key role of the brain is the regulation of the complex whole body energy metabolism. The Selfish Brain Theory identifies the priority of brain energy supply in the competition for available energy resources within the organism. Here, we review mathematical models of the human energy metabolism supporting central aspects of the Selfish Brain Theory. First, we present a dynamical system modeling the whole body energy metabolism. This model takes into account the two central control mechanisms of the brain, i.e., allocation and appetite. Moreover, we present mathematical models of regulatory subsystems. We examine a neuronal model which specifies potential elements of the brain to sense and regulate cerebral energy content. We investigate a model of the HPA system regulating the allocation of energy within the organism. Finally, we present a robust modeling approach of appetite regulation. All models account for a systemic understanding of the human energy metabolism and thus do shed light onto defects causing metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackerman E (1964) A mathematical model of the glucose-tolerance test. Phys Med Biol 9(2):203–213

    Google Scholar 

  2. Bergman R, Phillips L, Cobelli C (1981) Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J Clin Invest 68(6):1456–1467

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Berthoud HR (2004) Mind versus metabolism in the control of food intake and energy balance. Physiol Behav 81(5):781–793

    CAS  PubMed  Google Scholar 

  4. Brown A, Ransom B (2007) Astrocyte glycogen and brain energy metabolism. Glia 55: 1263–1271

    PubMed  Google Scholar 

  5. Calabrese E, Baldwin L (2003) Toxicology rethinks its central belief. Nature 421(6924): 691–692

    CAS  PubMed  Google Scholar 

  6. Chow C, Hall K (2008) The dynamics of human body weight change. PLoS Comput Biol 4(3):1–11

    Google Scholar 

  7. Chung M, Göbel B, Peters A, Oltmanns K, Moser A (2011) Mathematical modeling of the biphasic dopaminergic response to glucose. J Biomed Sci Eng 4:36–145

    Google Scholar 

  8. Clark D, Sokoloff L (1999) Basic neurochemistry: molecular, cellular and medical aspects. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  9. Conrad M, Hubold C, Fischer B, Peters A (2009) Modeling the hypothalamus–pituitary–adrenal system: homeostasis by interacting positive and negative feedback. J Biol Phys 35:149–162

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dunning B, Ahrén B, Veith R, Taborsky G (1988) Nonadrenergic sympathetic neural influences on basal pancreatic hormone secretion. Am J Physiol 255:E785–E792

    CAS  PubMed  Google Scholar 

  11. Gaohua L, Kimura H (2009) A mathematical model of brain glucose homeostasis. Theor Biol Med Model 6(26):1–24

    Google Scholar 

  12. Gerendai I, Halász B (2000) Central nervous system structures connected with the endocrine glands. findings obtained with the viral transneuronal tracing technique. Exp Clin Endocrinol Diabetes 108(6):389–395

    CAS  PubMed  Google Scholar 

  13. Göbel B, Chung M, Oltmanns K, Peters A, Langemann D (2011) Robust modeling of appetite regulation. J Theor Biol 291:65–75

    PubMed  Google Scholar 

  14. Göbel B, Langemann D (2011) Systemic investigation of a brain-centered model of the human energy metabolism. Theory Biosci 130(1):5–18

    PubMed  Google Scholar 

  15. Göbel B, Langemann D, Oltmanns K, Chung M (2010) Compact energy metabolism model: Brain controlled energy supply. J Theor Biol 264:1214–1224

    PubMed  Google Scholar 

  16. Hall K (2006) Computational model of in vivo human energy metabolism during semistarvation and refeeding. Am J Physiol Endocrinol Metab 291(1):E23–E37

    CAS  PubMed  Google Scholar 

  17. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117(4):500–544

    CAS  PubMed  Google Scholar 

  18. van Itallie T (1990) The glucostatic theory 1953–1988: roots and branches. Int J Obesity 14: 1–10

    Google Scholar 

  19. Jansen A, Hoffman J, Loewy A (1997) CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study. Brain Res 766:29–38

    CAS  PubMed  Google Scholar 

  20. Kennedy G (1953) The role of depot fat in the hypothalamic control of food intake in the rat. Proc Royal Soc Lond B Biol Sci 140(901):578–592

    CAS  Google Scholar 

  21. Khalil H (2002) Nonlinear systems, 3 edn. Pearson Higher Education, Prentice Hall, Upper Saddle River

    Google Scholar 

  22. Langemann D (2007) Selfish brain theory: mathematical challenges in the top–down analysis of metabolic supply chains. Grundy, J. (Ed.) Proc. Tutorials, posters, panels and industrial contributions at the 26th Int Conf on conceptual modeling – ER 2007 Auckland, New Zealand, CRPIT 83:39–49

    Google Scholar 

  23. Langemann D, Peters A (2008) Deductive functional assignment of elements in appetite regulation. J Biol Phys 34:413–424

    PubMed  PubMed Central  Google Scholar 

  24. Liu D, Michel A (1994) Dynamical systems with saturation nonlinearities: analysis and design. Springer, New York

    Google Scholar 

  25. Liu W, Tang F (2008) Modeling a simplified regulatory system of blood glucose at molecular levels. J Theor Biol 252(4):608–620

    CAS  PubMed  Google Scholar 

  26. Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283(5401):496–497

    CAS  PubMed  Google Scholar 

  27. Man CD, Rizza R, Cobelli C (2007) Meal simulation model of the glucose–insulin system. IEEE Trans Biomed Eng 54(10):1740–1749

    PubMed  Google Scholar 

  28. Marty N, Dallaporta M, Thorens B (2007) Brain glucose sensing, counterregulation, and energy homeostasis. Physiology 22:241–251

    CAS  PubMed  Google Scholar 

  29. Mayer J (1953) Glucostatic mechanism of regulation of food intake. N Engl J Med 249(1): 13–16

    CAS  PubMed  Google Scholar 

  30. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443(7109):289–295

    CAS  PubMed  Google Scholar 

  31. Neary N, Goldstone A, Bloom S (2004) Appetite regulation: from the gut to the hypothalamus. Clin Endocrino 60:153–160

    Google Scholar 

  32. Oltmanns K, Melchert U, Scholand-Engler H, Howitz M, Schultes B, Schweiger U, Hohagen F, Born J, Peters A, Pellerin L (2008) Differential energetic response of brain vs. skeletal muscle upon glycemic variations in healthy humans. Am J Physiol Regul Integr Comp Physiol 294(1):R12–R16

    CAS  PubMed  Google Scholar 

  33. Perko L (2001) Differential equations and dynamical systems, 3 edn. Springer, New York

    Google Scholar 

  34. Peters A, Conrad M, Hubold C, Schweiger U, Fischer B, Fehm H.L (2007) The principle of homeostasis in the hypothalamus–pituitary–adrenal system: new insight from positive feedback. Am J Physiol Regul Integr Comp Physiol 293(1):R83–R98

    CAS  PubMed  Google Scholar 

  35. Peters A, Langemann D (2009) Build-ups in the supply chain of the brain: on the neuroenergetic cause of obesity and type 2 diabetes mellitus. Front Neuroenerg 1, Art. 2:1–15

    Google Scholar 

  36. Peters A, Pellerin L, Dallman MF, Oltmanns KM, Schweiger U, Born J, Fehm HL (2007) Causes of obesity: looking beyond the hypothalamus. Prog Neurobiol 81(2):61–88

    CAS  PubMed  Google Scholar 

  37. Peters A, Schweiger U, Pellerin L, Hubold C, Oltmanns KM, Conrad M, Schultes B, Born J, Fehm HL (2004) The selfish brain: competition for energy resources. Neurosci Biobehav Rev 28(2):143–180

    CAS  PubMed  Google Scholar 

  38. Rumpler W, Kramer M, Rhodes D, Paul D (2006) The impact of the covert manipulation of macronutrient intake on energy intake and the variability in daily food intake in nonobese men. Int J Obes 30:774–781

    CAS  Google Scholar 

  39. Schmoller A, Hass T, Strugovshchikova O, Melchert U, Scholand-Engler H, Peters A, Schweiger U, Hohagen F, Oltmanns K (2010) Evidence for a relationship between body mass and energy metabolism in the human brain. J Cereb Blood Flow Metab 30(7):1403–1410

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Schwartz MW, Porte D Jr (2005) Diabetes, obesity, and the brain. Science 307:375–379

    CAS  PubMed  Google Scholar 

  41. Schwartz MW, Woods S, Porte D, Seeley R, Baskin D (2000) Central nervous system control of food intake. Nature 404:661–671

    CAS  PubMed  Google Scholar 

  42. Schweiger U, Greggersen W, Rudolf S, Pusch M, Menzel T, Winn S, Hassfurth J, Fassbinder E, Kahl K, Oltmanns K, Hohagen F, Peters A (2008) Disturbed glucose disposal in patients with major depression; application of the glucose clamp technique. Psychosom Med 70(2):170–176

    PubMed  Google Scholar 

  43. Stanley S, Wynne K, McGowan B, Bloom S (2005) Hormonal regulation of food intake. Physiol Rev 85:1131–1158

    CAS  PubMed  Google Scholar 

  44. Steinkamp M, Li T, Fuellgraf H, Moser A (2007) K(ATP)-dependent neurotransmitter release in the neuronal network of the rat caudate nucleus. Neurochem Int 50(1):159–163

    CAS  PubMed  Google Scholar 

  45. Vannucci SJ, Maher F, Simpson IA (1997) Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia 21(1):2–21

    CAS  PubMed  Google Scholar 

  46. Vatov L, Kizner Z, Ruppin E, Meilin S, Manor T, Mayevsky A (2006) Modeling brain energy metabolism and function: a multiparametric monitoring approach. Bull Math Biol 68(2): 275–291

    PubMed  Google Scholar 

  47. Westerterp K, Donkers J, Fredrix E, Boekhoudt P (1995) Energy intake, physical activity and body weight: a simulation model. Br J Nutr 73:337–347

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Kerstin M. Oltmanns for her invaluable physiological expertise in the development of the presented models. We also thank the reviewer for his/her thorough review and highly appreciate the comments and suggestions, which significantly contributed to improving the quality of the publication. This work was supported by the Graduate School for Computing in Medicine and Life Sciences funded by the German Research Foundation [DFG GSC 235/1].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias Chung or Britta Göbel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Chung, M., Göbel, B. (2012). Mathematical Modeling of the Human Energy Metabolism Based on the Selfish Brain Theory. In: Goryanin, I.I., Goryachev, A.B. (eds) Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol 736. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7210-1_25

Download citation

Publish with us

Policies and ethics