Skip to main content

Gauge Fields and Instantons

  • Chapter
  • First Online:
Topology, Geometry and Gauge fields

Part of the book series: Texts in Applied Mathematics ((TAM,volume 25))

  • 5677 Accesses

Abstract

The Im ℍ-valued 1-form \(\omega = \mathrm{Im}\,(\bar{{q}}^{1}{\mathit{dq}}^{1} +\bar{ {q}}^{2}{\mathit{dq}}^{2})\) will occupy center stage for much of the remainder of our story. We begin by adopting its two most important properties ((5.9.10) and (5.9.11)) as the defining conditions for a connection on a principal bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lang, S., Linear Algebra, 2nd Edition, Addison-Wesley, Reading, MA, 1971.

    Google Scholar 

  2. Helgason, S., Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.

    MATH  Google Scholar 

  3. Donaldson, S.K., “An application of gauge theory to four dimensional topology”, J. Diff. Geo., 18(1983), 279–315.

    MathSciNet  MATH  Google Scholar 

  4. Spivak, M., A Comprehensive Introduction to Differential Geometry, Volumes I–V, Publish or Perish, Inc., Boston, 1979.

    Google Scholar 

  5. Yang, C.N. and R.L. Mills, “Conservation of isotopic spin and isotopic gauge invariance”, Phys. Rev., 96(1954), 191–195.

    Article  MathSciNet  Google Scholar 

  6. Kobayashi, S. and K. Nomizu, Foundations of Differential Geometry, Vol. 1, Wiley-Interscience, New York, 1963.

    Google Scholar 

  7. Belavin, A., A. Polyakov, A. Schwartz and Y. Tyupkin, “Pseudoparticle solutions of the Yang-Mills equations”, Phys. Lett., 59B(1975), 85–87.

    MathSciNet  Google Scholar 

  8. Trautman, A., “Solutions of the Maxwell and Yang-Mills equations associated with Hopf fibrings”, Inter. J. Theo. Phys., Vol. 16, No. 8 (1977), 561–565.

    Article  Google Scholar 

  9. Nowakowski, J. and A. Trautman, “Natural connections on Stiefel bundles are sourceless gauge fields”, J. Math. Phys., Vol. 19, No. 5 (1978), 1100–1103.

    Article  MathSciNet  MATH  Google Scholar 

  10. Freed, D.S., and K.K. Uhlenbeck, Instantons and Four-Manifolds, MSRI Publications, Springer-Verlag, New York, Berlin, 1984.

    Book  MATH  Google Scholar 

  11. Lawson, H.B., The Theory of Gauge Fields in Four Dimensions, Regional Conference Series in Mathematics #58, Amer. Math. Soc., Providence, RI, 1985.

    Google Scholar 

  12. Spivak, M., Calculus on Manifolds, W. A. Benjamin, Inc., New York, 1965.

    MATH  Google Scholar 

  13. Guidry, M., Gauge Field Theories, John Wiley & Sons, Inc., New York, 1991.

    Book  Google Scholar 

  14. Uhlenbeck, K., “Removable singularities in Yang-Mills fields”, Comm. Math. Phys., 83(1982), 11–30.

    Article  MathSciNet  MATH  Google Scholar 

  15. Naber, G.L., Topology, Geometry and Gauge Fields: Interactions, Springer-Verlag, New York, Berlin, to appear.

    Google Scholar 

  16. Atiyah, M.F., N.J. Hitchin and I.M. Singer, “Self duality in four dimensional Riemannian geometry”, Proc. Roy. Soc. Lond., A362(1978), 425–461.

    MathSciNet  Google Scholar 

  17. Atiyah, M.F., Geometry of Yang-Mills Fields, Lezioni Fermiane, Accademia Nazionale dei Lincei Scuola Normale Superione, Pisa, 1979.

    MATH  Google Scholar 

  18. Matumoto, T., “Three Riemannian metrics on the moduli space of BPST instantons over S 4”, Hiroshima Math. J., 19(1989), 221–224.

    MathSciNet  MATH  Google Scholar 

  19. Marathe, K.B. and G. Martucci, The Mathematical Foundations of Gauge Theories, North-Holland, Amsterdam, 1992.

    MATH  Google Scholar 

  20. Buchdahl, N.P., “Instantons on CP 2”, J. Diff. Geo., 24(1986), 19–52.

    MathSciNet  MATH  Google Scholar 

  21. Naber, G.L., The Geometry of Minkowski Spacetime, Springer-Verlag, Applied Mathematical Sciences Series #92, New York, Berlin, 1992.

    Google Scholar 

  22. Bleecker, D., Gauge Theory and Variational Principles, Addison-Wesley, Reading, MA, 1981.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Naber, G.L. (2011). Gauge Fields and Instantons. In: Topology, Geometry and Gauge fields. Texts in Applied Mathematics, vol 25. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7254-5_6

Download citation

Publish with us

Policies and ethics