Skip to main content

Thermal Properties of Aerogels

  • Chapter
  • First Online:
Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

This chapter provides an insight into the different aspects of heat transfer in aerogels and their thermal properties. In this context, the principle heat transfer mechanisms are discussed and illustrated by exemplary experimental results. Typical thermal conductivity values and radiative properties as well as their dependency on external conditions such as temperature or atmosphere are discussed for different classes of aerogels. The chapter concludes with a brief discussion about the specific heat of aerogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kistler, S.S., The Relation between Heat Conductivity and Structure in Silica Aerogel. J. Phys. Chem., 1935. 39(1): p. 79–86.

    Article  CAS  Google Scholar 

  2. Kistler, S.S., The calculation of the surface area of microporous solids from measurements of heat conductivity. Journal of Physical Chemistry, 1942. 46(1): p. 19–31.

    Article  CAS  Google Scholar 

  3. White, J.F., Silica Aerogel: Effect of Variables on Its Thermal Conductivity. Industrial and Engineering Chemistry, 1939. 31(7): p. 827–831.

    Article  CAS  Google Scholar 

  4. Özisik, M., Radiative Transfer. 1973, New York: John Wiley & Sons.

    Google Scholar 

  5. Bankvall, C.G., Natural Convection in Vertical Permeable Space. Wärme- und Stoffübertragung, 1974. 7: p. 22–30.

    Article  Google Scholar 

  6. Clyne, T.W., Golosnoy, I.O., Tan, J.C. and Markaki, A.E., Porous materials for thermal management under extreme conditions. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2006. 364(1838): p. 125–146.

    Article  CAS  Google Scholar 

  7. Debye, P., Vorträge über die Kinetische Theorie der Materie und der Elektrizität. 1914, Berlin: B. G. Teubner.

    Google Scholar 

  8. Lu, X., Transport Properties of Porous Media, PhD thesis, University of Würzburg, Germany, 1991.

    Google Scholar 

  9. Scheuerpflug, P., Morper, H.J., Neubert, G. and Fricke, J., Low-Temperature Thermal Transport in Silica Aerogels. Journal of Physics D-Applied Physics, 1991. 24(8): p. 1395–1403.

    Article  CAS  Google Scholar 

  10. Stauffer, D., Introduction to Percolation Theory. 1985, London: Taylor and Francis.

    Book  Google Scholar 

  11. Heinemann, U., Wärmetransport in semitransparenten nichtgrauen Medien am Beispiel von SiO2-Aerogelen, Dissertation, University of Würzburg, 1993.

    Google Scholar 

  12. Cahill, D.G., Stephens, R.B., Tait, R.H., Watson, S.K. and Pohl, R.O. Thermal Conductivity and Lattice Vibration in Glasses. in Thermal Conductivity. 1990: Plenum Press New York.

    Google Scholar 

  13. Pekala, R.W., Alviso, C.T., Lu, X., Gross, J. and Fricke, J., New Organic Aerogels Based Upon a Phenolic-Furfural Reaction. Journal of Non-Crystalline Solids, 1995. 188(1-2): p. 34–40.

    Article  CAS  Google Scholar 

  14. Nilsson, O., Rüschenpöhler, G., Gross, J. and Fricke, J., Correlation between thermal conductivity and elasto-mechanical properties of compressed porous media. High Temperatures - High Pressures, 1989. 21: p. 267.

    CAS  Google Scholar 

  15. Reif, F., Fundamentals of Statistical and Thermal Physics. 1965: McGraw-Hill, Inc.

    Google Scholar 

  16. Kaganer, M.G., Thermal Insulation in Cryogenic Engineering. 1969, IPST Press: Jerusalem, Israel.

    Google Scholar 

  17. Swimm, K., Reichenauer, G., Vidi, S. and Ebert, H.-P., Gas Pressure Dependence of the Heat Transport in Solids with Pores Smaller than 10μm. International Journal of Thermophysics, 2009. 30(4): p. 1329–1342

    Article  CAS  Google Scholar 

  18. Siegel, R. and Howell, J.R., Thermal Radiation heat transfer. 1972, Tokyo: McGraw-Hill Kogakushka, Ltd.

    Google Scholar 

  19. Cerny, M., Walther, A., Tables of Fractional Functions for the Planck Radiation Law. 1961, Berlin: Springer Verlag.

    Google Scholar 

  20. Jackson, J.D., Classical Electrodynamics. third edition ed. 1999, New York: John Wiley & Sons.

    Google Scholar 

  21. Poelz, G. Aerogel in High Energy Physics. in First International Symposium on Aerogels (1st ISA). 1985. Würzburg, Germany: Springer-Verlag.

    Google Scholar 

  22. Pomraning, G.C., Prinja, A. K., Shokair, I. R., J.Quant. Spectrosc. Radiat. Transfer, 1981. 26: p. 199–213.

    Article  CAS  Google Scholar 

  23. Caps, R. and Fricke, J. Radiative Heat Transfer in Silica Aerogel. in First International Symposium on Aerogels (1st ISA). 1985. Würzburg, Germany: Springer-Verlag.

    Google Scholar 

  24. Ebert, H.-P., Caps, R., Heinemann, U. and Fricke, J. Aerogels – open-pored nanostructered insulating materials. in International Centre for Heat and Mass Transfer (ICHTM) Symposium on Molecular and Microscale Heat Transfer in Materials Processing another Applications. 1996. Yokohama, Japan.

    Google Scholar 

  25. Lu, X., Wang, P., Buttner, D., Heinemann, U., Nilsson, O., Kuhn, J. and Fricke, J., Thermal transport in opacified monolithic silica aerogels. High Temperatures - High Pressures, 1991. 23(4): p. 431–436.

    CAS  Google Scholar 

  26. Kuhn, J., Gleissner, T., Arduinischuster, M.C., Korder, S. and Fricke, J., Integration of Mineral Powders into SiO2 Aerogels. Journal of Non-Crystalline Solids, 1995. 186: p. 291–295.

    Article  CAS  Google Scholar 

  27. Hrubesh, L.W. and Pekala, R.W., Thermal-Properties of Organic and Inorganic Aerogels. Journal of Materials Research, 1994. 9(3): p. 731–738.

    Article  CAS  Google Scholar 

  28. Zeng, S.Q., Hunt, A. and Greif, R., Theoretical Modeling of Carbon Content to Minimize Heat-Transfer in Silica Aerogel. Journal of Non-Crystalline Solids, 1995. 186: p. 271–277.

    Article  CAS  Google Scholar 

  29. Lee, D., Stevens, P.C., Zeng, S.Q. and Hunt, A.J., Thermal Characterization of Carbon-Opacified Silica Aerogels. Journal of Non-Crystalline Solids, 1995. 186: p. 285–290.

    Article  CAS  Google Scholar 

  30. Ebert, H.-P., Bock, V., Nilsson, O. and Fricke, J. Errors From Radiative Heat Transfer In The Determination Of The Thermal Conductivity In Semitransparent Media Using The Hot-Wire Method. in 21th Eurotherm Seminar: Heat Transfer in Semi-Transparent Media. 1992. Lyon.

    Google Scholar 

  31. Lu, X., Caps, R., Fricke, J., Alviso, C.T. and Pekala, R.W., Correlation between Structure and Thermal-Conductivity of Organic Aerogels. Journal of Non-Crystalline Solids, 1995. 188(3): p. 226–234.

    Article  CAS  Google Scholar 

  32. Lu, X., Arduini-Schuster, M.C., Kuhn, J., Nilsson, O., Fricke, J. and Pekala, R.W., Thermal Conductivity of Monolithic Organic Aerogels. Science, 1992. 255(5047): p. 971–972.

    Article  CAS  Google Scholar 

  33. Lee, J.K. and Gould, G.L., Polydicyclopentadiene based aerogel: a new insulation material. J Sol-Gel Sci Technol, 2007. 44: p. 29–40.

    Article  CAS  Google Scholar 

  34. Lee, J.K., Gould, G.L. and Rhine, W., Polyurea based aerogel for a high performance thermal insulation material. J Sol-Gel Sci Technol, 2009. 49(2): p. 209–220.

    Article  CAS  Google Scholar 

  35. Biesmans, G., Randall, D., Francais, E. and Perrut, M., Polyurethane-based Organic Aerogels Thermal Performance. J. Non-cryst. Solids, 1998. 225: p. 36.

    Article  CAS  Google Scholar 

  36. Fischer, F., Rigacci, A., Pirard, R., Berthon-Fabry, S. and Achard, P., Cellulose-based aerogels. Polymer, 2006. 47(22): p. 7636–7645.

    CAS  Google Scholar 

  37. Lu, X., Wang, P., Arduinischuster, M.C., Kuhn, J., Büttner, D., Nilsson, O., Heinemann, U. and Fricke, J., Thermal Transport in Organic and Opacified Silica Monolithic Aerogels. Journal of Non-Crystalline Solids, 1992. 145(1-3): p. 207–210.

    Article  CAS  Google Scholar 

  38. ZAE Bayern. 2009: Würzburg, Germany.

    Google Scholar 

  39. Fricke, J. and Petricevic, R., Aerogels - Carbon Aerogels, in Handbook of Porous Solids, F. Schüth, K.S.W. Sing, and J. Weitkamp, Editors. 2002, Wiley VCH. p. 2037–2062.

    Google Scholar 

  40. Bock, V., Nilsson, O., Blumm, J. and Fricke, J., Thermal Properties of Carbon Aerogels. Journal of Non-Crystalline Solids, 1995. 185(3): p. 233–239.

    Article  CAS  Google Scholar 

  41. Lu, X.P., Nilsson, O., Fricke, J. and Pekala, R.W., Thermal and Electrical-Conductivity of Monolithic Carbon Aerogels. Journal of Applied Physics, 1993. 73(2): p. 581–584.

    Article  Google Scholar 

  42. Nilsson, O., Bock, V. and Fricke, J., High Temperature Thermal Properties of Carbon Aerogels, in 22nd Thermal Conductivity Conference. 1993: Tempe, Arizona, USA.

    Google Scholar 

  43. Wiener, M., Reichenauer, G., Hemberger, F. and Ebert, H.-P., Thermal conductivity of monolithic synthetic hard carbons as a function of pyrolysis temperature. International Journal of Thermophysics, 2006. 27(6): p. 1826–1843.

    Article  CAS  Google Scholar 

  44. Wiener, M., Reichenauer, G., Braxmeier, S., Hemberger, F. and Ebert, H.P., Carbon Aerogel-Based High-Temperature Thermal Insulation. International Journal of Thermophysics, 2009. 30(4): p. 1372.

    Article  CAS  Google Scholar 

  45. Drach, V., Wiener, M., Reichenauer, G., Ebert, H.P. and Fricke, J., Determination of the Anisotropic Thermal Conductivity of a Carbon Aerogel–Fiber Composite by a Non-contact Thermographic Technique. International Journal of Thermophysics, 2007. 28(4): p. 1542–1562.

    Google Scholar 

  46. Hemberger, F., Weis, S., Reichenauer, G. and Ebert, H.P., Thermal Transport Properties of Functionally Graded Carbon Aerogels. International Journal of Thermophysics, 2009. 30(4): p. 1357–1371

    Article  CAS  Google Scholar 

  47. Heinemann, U., Caps, R. and Fricke, J., Radiation-conduction interaction : An investigation on silica aerogels. International Journal of Heat and Mass Transfer, 1996. 39(10): p. 2115–2130.

    Article  CAS  Google Scholar 

  48. Fricke, J., Caps, R., Hümmer, E., Döll, G., Arduini-Schuster, M. and De Ponte, F., Optically Thin Fibrous Insulations, in Insulation Materials, Testing, and Applications, D.L. McElroy, Editor. 1990, American Society for Testing and Materials ASTM STP 1030: Philadelphia. p. 575–586.

    Google Scholar 

  49. Ebert, H.P. and Fricke, J., Influence of Radiative Transport on Hot-Wire Thermal Conductivity Measurement. High Temperatures - High Pressures, 1998. 30: p. 655–669.

    Article  CAS  Google Scholar 

  50. Bernasconi, A., Sleator, T., Posselt, D., Kjems, J.K. and Ott, H.R., Dynamic properties of silica aerogels as deduced from specific-heat and thermal-conductivity measurements. Physical Review B, 1992. 45(18): p. 10363–10376.

    Article  CAS  Google Scholar 

  51. Scheuerpflug, P., Hauck, M. and Fricke, J., Thermal Properties of Silica Aerogels between 1.4 and 330 K. J. Non-cryst. Solids, 1992. 145: p. 196–201.

    Article  CAS  Google Scholar 

  52. Conrad, H., Buchenau, U., Schatzler, R., Reichenauer, G. and Fricke, J., Crossover in the Vibrational Density of States of Silica Aerogels Studied by High-Resolution Neutron Spectroscopy. Physical Review B, 1990. 41(4): p. 2573–2576.

    Article  Google Scholar 

  53. Tsujimi, Y., Courtens, E., Pelous, J. and Vacher, R., Raman-Scattering Measurements of Acoustic Superlocalization in Silica Aerogels. Physical Review Letters, 1988. 60(26): p. 2757–2760.

    Article  CAS  Google Scholar 

  54. Buchenau, U., Monkenbusch, M., Reichenauer, G. and Frick, B., Inelastic Neutron-Scattering from Virgin and Densified Aerogels. Journal of Non-Crystalline Solids, 1992. 145(1-3): p. 121–127.

    Article  CAS  Google Scholar 

  55. Fesmire, J.E., Aerogel insulation systems for space launch applications. Cryogenics, 2006. 46: p. 111–117.

    Article  CAS  Google Scholar 

  56. Blüher, P., Latentwärmespeicher erhöht den Fahrkomfort und die Fahrsicherheit. Automobiltechnische Zeitschrift ATZ, 1991. 93(10).

    Google Scholar 

  57. Reim, M., Korner, W., Manara, J., Korder, S., Arduini-Schuster, M., Ebert, H.P. and Fricke, J., Silica aerogel granulate material for thermal insulation and daylighting. Solar Energy, 2005. 79(2): p. 131–139.

    Article  CAS  Google Scholar 

  58. Reim, M., Reichenauer, G., Korner, W., Manara, J., Arduini-Schuster, M., Korder, S., Beck, A. and Fricke, J., Silica-aerogel granulate - Structural, optical and thermal properties. Journal of Non-Crystalline Solids, 2004. 350: p. 358–363.

    Article  CAS  Google Scholar 

  59. Klemens, P.G., in Thermal Conductivity 21, C.J. Cremers and H.A. Fine, Editors. 1990, Plenum: New York. p. 383.

    Google Scholar 

  60. Rettelbach, T., Saeuberlich, J., Korder, S. and Fricke, J., Thermal conductivity of IR-opacified silica aerogel powders between 10 K and 275 K. Journal of Physics D: Applied Physics, 1995. 28(3): p. 581–587.

    Article  CAS  Google Scholar 

  61. Rettelbach, T., Der Wärmetransport in evakuierten Pulvern bei Temperaturen zwischen 10 K und 275 K, Dissertation, University of Würzburg / Germany, 1996

    Google Scholar 

  62. Bisson, A., Rigacci, A., D., L. and Achard, P., Effective thermal conductivity of divided silica xerogel beds. Journal of Non-Crystalline Solids, 2004. 350: p. 379–384.

    Article  CAS  Google Scholar 

  63. ZAE Bayern. 2003: Würzburg, Germany.

    Google Scholar 

  64. Calemczuk, R., De Goer, A.M., Salce, B., Maynard, R. and Zarembowitch, A., Low-Temperature Properties of Silica Aerogels. Europhys. Lett., 1987. 3: p. 1205–1211.

    Article  CAS  Google Scholar 

  65. Maynard, R., Calemczuk, R., De Goer, A.M., Salce, B., Bon, J., Bonjour, E. and Bourret, A., Low Energy Excitations in Silica Aerogels. Revue de Physique Appliquêe Colloque C4, 1989. supplément au n°4(24): p. 107–112.

    Google Scholar 

  66. Sleator, T., Bernasconi, A., Posselt, D., Kjems, J.K. and Ott, H.R., Low-Temperature Specific Heat and Thermal Conductivity of Silica Aerogels. Physical Review Letters, 1991. 66(8): p. 1070–1073.

    Article  CAS  Google Scholar 

  67. Nilsson, O., Fransson, A. and Sandberg, O. Thermal Properties of Silica Aerogel. in First International Symposium on Aerogels. 1985. Würzburg: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Peter Ebert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ebert, HP. (2011). Thermal Properties of Aerogels. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics