Skip to main content

A Fluid Model for Quantum Plasmas

  • Chapter
  • First Online:
Quantum Plasmas

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 65))

Abstract

A quantum fluid model is derived from the Wigner–Poisson system. Quantum statistical effects can be incorporated using a convenient equation of state. Quantum diffraction effects manifest through a Bohm potential term. The derivation is based on the Madelung representation of the ensemble wavefunctions, so that the second-order moment of the Wigner function appear as the sum of kinetic and osmotic pressures and the Bohm potential. The case of an one-dimensional zero-temperature Fermi gas is treated, for both one and two-stream plasmas. The validity conditions for the quantum hydrodynamic model for plasmas are discussed. The derivation of the equation of state for a zero-temperature Fermi gas is detailed for one, two, and three spatial dimensions. The long wavelength condition to avoid kinetic effects is treated in the case of a degenerate plasma. The question of the representation of a given Wigner function in terms of a set of ensemble wavefunctions is worked out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, S., Terças, H. and Mendonça J. T.: Nonlocal plasmon excitation in metallic nanostructures. Phys. Rev. B 83, 153401–153405 (2011)

    Article  ADS  Google Scholar 

  2. Ancona, M. G., Iafrate, G. J.: Quantum correction to the equation of state of an electron gas in a semiconductor. Phys. Rev. B 39, 9536–9540 (1989)

    Article  ADS  Google Scholar 

  3. Ancona, M. G., Tiersten, H. F.: Macroscopic physics of the silicon inversion layer. Phys. Rev. B. 35, 7959–7965 (1987)

    Article  ADS  Google Scholar 

  4. Ashcroft, N. W. and Mermin, N. D.: Solid State Physics. Saunders College Publishing, Orlando (1976)

    Google Scholar 

  5. Bohm, D. and Hiley, B. J.: The Undivided Universe: an Ontological Interpretation of Quantum Theory. Routledge, London (1993)

    Google Scholar 

  6. Bohm, D., Pines, D.: A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys. Rev. 92, 609–625 (1953)

    MathSciNet  MATH  Google Scholar 

  7. Carruthers, P., Zachariasen, F.: Quantum collision theory with phase-space distributions. Rev. Mod. Phys. 55, 245–285 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  8. Crouseilles, N., Hervieux, P. A. and Manfredi, G.: Quantum hydrodynamic model for the nonlinear electron dynamics in thin metal films. Phys. Rev. B 78, 155412–155423 (2008)

    Article  ADS  Google Scholar 

  9. Frensley, W. R.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 62, 745–791 (1990)

    Article  ADS  Google Scholar 

  10. Gardner, C.L.: The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math. 54, 409–427 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Gasser, I., Lin, C. and Markowich, P. A.: A review of dispersive limits of (non)linear Schrödinger-type equations. Taiwan. J. Math. 4, 501–529 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Ghosh, S. Dubey, S. and Vanshpal, R.: Quantum effect on parametric amplification characteristics in piezoelectric semiconductors. Phys. Lett. A 375, 43–47 (2010)

    Article  ADS  Google Scholar 

  13. Haas, F., Manfredi, G., Feix, M. R.: Multistream model for quantum plasmas. Phys. Rev. E 62, 2763–2772 (2000)

    Article  ADS  Google Scholar 

  14. Haas, F. Shukla, P. K. and Eliasson, B.: Nonlinear saturation of the Weibel instability in a dense Fermi plasma. J. Plasma Phys. 75, 251–259 (2009)

    Article  ADS  Google Scholar 

  15. Haas, F., Manfredi, G., Shukla, P. K. and Hervieux, P.-A.: Breather mode in the many-electron dynamics of semiconductor quantum wells. Phys. Rev. B 80, 073301–073305 (2009)

    Article  ADS  Google Scholar 

  16. Kolomeisky, E. B., Newman, T. J., Straley, J. P., Xiaoya, Q.: Low-dimensional Bose liquids: beyond the Gross-Pitaevskii approximation. Phys. Rev. Lett. 85, 1146–1149 (2000)

    Article  ADS  Google Scholar 

  17. López, J. L. and Montejo-Gámez, J.: A hydrodynamic approach to multidimensional dissipation-based Schrödinger models from quantum Fokker-Planck dynamics. Physica D 238, 622–644 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Madelung, E.: Quantum theory in hydrodynamical form. Z. Phys. 40, 332–336 (1926)

    Google Scholar 

  19. Manfredi, G., Feix, M. R.: Theory and simulation of classical and quantum echoes. Phys. Rev. E 53, 6460–6470 (1996)

    Article  ADS  Google Scholar 

  20. Manfredi, G., Haas, F.: Self-consistent fluid model for a quantum electron gas. Phys. Rev. B 64, 075316–075323 (2001)

    Article  ADS  Google Scholar 

  21. Manfredi, G.: How to model quantum plasmas. Fields Inst. Commun. 46, 263–287 (2005)

    MathSciNet  Google Scholar 

  22. Shukla, P. K. and Eliasson, B.: Nonlinear theory for a quantum diode in a dense fermi magnetoplasma. Phys. Rev. Lett. 100, 036801–036805 (2008)

    Article  ADS  Google Scholar 

  23. Suh, N. D., Feix, M. R., Bertrand, P.: Numerical simulation of the quantum Liouville–Poisson system. J. Comput Phys. 94, 403–418 (1991)

    Article  ADS  MATH  Google Scholar 

  24. Wei, L. and Wang, Y. N.: Quantum ion-acoustic waves in single-walled carbon nanotubes studied with a quantum hydrodynamic model. Phys. Rev. B 75, 193407–193410 (2007)

    Article  ADS  Google Scholar 

  25. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Haas .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Haas, F. (2011). A Fluid Model for Quantum Plasmas. In: Quantum Plasmas. Springer Series on Atomic, Optical, and Plasma Physics, vol 65. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8201-8_4

Download citation

Publish with us

Policies and ethics