Skip to main content

Abstract

One of the most important developments in the wireless industry within the last decade was the digitization of RF circuitry. This was in response to the incredible advancements of the mainstream CMOS technology in both processing speed and circuit density, as well as the relentless push to reduce total solution costs through integration of RF, analog and digital circuitry. Since the digital baseband part of a wireless communication channel has been traditionally implemented in the most advanced CMOS technology available at a given time for mass production, the need for single-chip CMOS integration has forced permanent changes to the way RF circuits are fundamentally designed. In this low-voltage nanometer-scale CMOS environment, the high-performance RF circuits must exploit the time-domain design paradigm and heavily rely on digital assistance. This chapter revisits the digitization journey of RF circuits and offers a glimpse into the future of digital RF technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. B. Staszewski, “Digital RF technology for expanding programmability of RF transceivers,” SK Telecom Journal - Reconfigurable RF Systems, vol. 20, no. 5, pp. 721–738, Oct. 2010.

    Google Scholar 

  2. F. M. Gardner, “Charge-pump phase-locked loops,” IEEE Trans. on Communications, vol. COMM-28, pp. 1849–1858, Nov. 1980.

    Article  Google Scholar 

  3. B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.

    Google Scholar 

  4. T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge, UK: Cambridge University Press, 1998.

    Google Scholar 

  5. A. A. Abidi, “RF CMOS comes of age,” IEEE Journal of Solid-State Circuits, vol. 39, iss. 4, pp. 549–561, April 2004.

    Article  Google Scholar 

  6. A. Matsuzawa, “Digital-centric RF CMOS technology,” IEEE Radio-Frequency Integration Technology (RFIT) Conf., pp. 122–126, Dec. 2007.

    Google Scholar 

  7. R. B. Staszewski, K. Muhammad, D. Leipold, C.-M. Hung, Y.-C. Ho, J. L. Wallberg, C. Fernando, K. Maggio, R. Staszewski, T. Jung, J. Koh, S. John, I. Y. Deng, V. Sarda, O. Moreira-Tamayo, V. Mayega, R. Katz, O. Friedman, O. E. Eliezer, E. de-Obaldia, and P. T. Balsara, “All-digital TX frequency synthesizer and discrete-time receiver for Bluetooth radio in 130-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 39, iss. 12, pp. 2278–2291, Dec. 2004.

    Article  Google Scholar 

  8. R. B. Staszewski, J. Wallberg, S. Rezeq, C.-M. Hung, O. Eliezer, S. Vemulapalli, C. Fernando, K. Maggio, R. Staszewski, N. Barton, M.-C. Lee, P. Cruise, M. Entezari, K. Muhammad, and D. Leipold, “All-digital PLL and transmitter for mobile phones,” IEEE Journal of Solid-State Circuits, vol. 40, iss. 12, pp. 2469–2482, Dec. 2005.

    Article  Google Scholar 

  9. T. H. Lee, “CMOS RF: (Still) no longer an oxymoron,” Proc. of Symposium on Radio Frequency Integrated Circuits, pp. 3–6, 1999.

    Google Scholar 

  10. R. B. Staszewski, “Digital deep-submicron CMOS frequency synthesis for RF wireless applications,” Ph. D. thesis, Univ. of Texas at Dallas, Aug. 2002.

    Google Scholar 

  11. R. B. Staszewski and P. T. Balsara, All-Digital Frequency Synthesizer in Deep-Submicron CMOS, New Jersey: John Wiley & Sons, Inc., Sept. 2006.

    Google Scholar 

  12. R. B. Staszewski, D. Leipold, O. Eliezer, M. Entezari, K. Muhammad, I. Bashir, C.-M. Hung, J. Wallberg, R. Staszewski, P. Cruise, S. Rezeq, S. Vemulapalli, K. Waheed, N. Barton, M.-C. Lee, C. Fernando, K. Maggio, T. Jung, I. Elahi, S. Larson, T. Murphy, G. Feygin, I. Deng, T. Mayhugh, Y.-C. Ho, K.-M. Low, C. Lin, J. Jaehnig, J. Kerr, J. Mehta, S. Glock, T. Almholt, S. Bhatara, “A 24mm2 quad-band single-chip GSM radio with transmitter calibration in 90nm digital CMOS,” Proc. of IEEE Solid-State Circuits Conf., sec. 10.5, pp. 208–209, 607, Feb. 2008.

    Google Scholar 

  13. J. Mehta, R. B. Staszewski, O. Eliezer, S. Rezeq, K. Waheed, M. Entezari, G. Feygin, S. Vemulapalli, V. Zoicas, C.-M. Hung, N. Barton, I. Bashir, K. Maggio, M. Frechette, M.-C. Lee, J. Walberg, P. Cruise, N. Yanduru, “A 0.8 mm2 all-digital SAW-less polar transmitter in 65nm EDGE SoC,” Proc. of IEEE Solid-State Circuits Conf., sec. 3.2, pp. 58–59, Feb. 2010, San Francisco, CA, USA.

    Google Scholar 

  14. F. O. Eynde, J.-J. Schmit, V. Charlier, R. Alexandre, C. Sturman, K. Coffin, B. Moliekens, J. Craninckx, S. Terrijn, A. Monterastelli, S. Beerens, P. Goetschalckx, M. Ingels, D. Joos, S. Guncer, and A. Pontioglu, “A fully-integrated single-chip SOC for Bluetooth,” Proc. of IEEE Solid-State Circuits Conf., sec. 13.1, pp. 196–197, 446, Feb. 2001.

    Google Scholar 

  15. P. H. Bonnaud, M. Hammes, A. Hanke, J. Kissing, R. Koch, E. Labarre, and C. Schwoerer, “A fully integrated SoC for GSM/GPRS in 0.13μm CMOS,” Proc. of IEEE Solid-State Circuits Conf., pp. 482–483, 667, Feb. 2006.

    Google Scholar 

  16. S. Mehta, W. W. Si, H. Samavati, M. Terrovitis, M. Mack, K. Onodera, S. Jen, S. Luschas, J. Hwang, S. Mendis, D. Su, and B. Wooley, “A 1.9GHz single-chip CMOS PHS cellphone,” Proc. of IEEE Solid-State Circuits Conf., pp. 484–485, 668, Feb. 2006.

    Google Scholar 

  17. D. Weber, W. Si, S. Abdollahi-Alibeik, M.-L. Lee, R. Chang, H. Dogan, S. Luschas, and P. Husted, “A single-chip CMOS radio SoC for v2.1 Bluetooth applications,” Proc. of IEEE Solid-State Circuits Conf., sec. 20.5, pp. 364–365, 620, Feb. 2008.

    Google Scholar 

  18. L. Nathawad, M. Zargari, H. Samovati, S. Mehta, A. Kheirkhahi, P. Chen, K. Gong, B. Vakili-Amini, J. Hwang, M. Chen, M. Terrovitis, B. Kaczynski, S. Limotyrakis, M. Mack, H. Gan, M. Lee, S. Abdollahi-Alibeik, B. Baytekin, K. Onodera, S. Mendis, A. Chang, S. Jen, D. Su, and B. Wooley, “A dual-band CMOS MIMO radio SoC for IEEE 802.11n wireless LAN,” Proc. of IEEE Solid-State Circuits Conf., sec. 20.2, pp. 358–359, 619, Feb. 2008.

    Google Scholar 

  19. R. B. Staszewski, I. Bashir, and O. Eliezer, “RF built-in self test of a wireless transmitter,” IEEE Trans. on Circuits and Systems II, vol. 54, no. 2, pp. 186–190, Feb. 2007.

    Article  Google Scholar 

  20. K. Muhammad, Y.-C. Ho, T. Mayhugh, C.-M. Hung, T. Jung, I. Elahi, C. Lin, I. Deng, C. Fernando, J. Wallberg, S. Vemulapalli, S. Larson, T. Murphy, D. Leipold, P. Cruise, J. Jaehnig, M.-C. Lee, R. B. Staszewski, R. Staszewski, and K. Maggio, “The first fully integrated quad-band GSM/GPRS receiver in a 90nm digital CMOS process,” IEEE Journal of Solid-State Circuits, vol. 41, iss. 8, pp. 1772–1783, Aug. 2006.

    Article  Google Scholar 

  21. R. B. Staszewski, J. Wallberg, C.-M. Hung, G. Feygin, M. Entezari, and D. Leipold, “LMS-based calibration of an RF digitally-controlled oscillator for mobile phones,” IEEE Trans. on Circuits and Systems II, vol. 53, no. 3, pp. 225–229, Mar. 2006.

    Article  Google Scholar 

  22. “GSM Specification: Radio Transmission and Reception, GSM 05.05 version 8.5.1,” ETSI EN 300 910, http://www.etsi.org, Nov. 2000.

  23. R. Staszewski, R. B. Staszewski, T. Jung, T. Murphy, I. Bashir, O. Eliezer, K. Muhammad, and M. Entezari, “Software assisted Digital RF Processor (DRPTM) for single-chip GSM radio in 90 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 45, iss. 2, pp. 276–288, Feb. 2010.

    Article  Google Scholar 

  24. M. H. Perrott, R. T. Rex, and Y. Huang, “Digitally-synthesized loop filter circuit particularly useful for a phase locked loop,” US patent 6,630,868, issued Oct. 7, 2003.

    Google Scholar 

  25. A. Kajiwara, M. Nakagawa, “A new PLL frequency synthesizer with high switching speed,” IEEE Trans. on Vehicular Technology, vol. 41, no. 4, pp. 407–413, Nov 1992.

    Article  Google Scholar 

  26. S.-Y. Yang, W.-Z. Chen, and T.-Y. Lu, “A 7.1 mW, 10 GHz all digital frequency synthesizer with dynamically reconfigured digital loop filter in 90 nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 578–586, Mar. 2010.

    Google Scholar 

  27. W.-H. Wu, J. R. Long, and R. B. Staszewski, “A digital ultra-fast acquisition linear frequency modulated PLL for mm-wave FMCW radars,” Proc. of IEEE Symp. on Radio-Frequency Integration Technology (RFIT) Conf., pp. 32–35, Dec. 2009.

    Google Scholar 

  28. R. B. Staszewski, C.-M. Hung, D. Leipold, and P. T. Balsara, “A first multigigahertz digitally controlled oscillator for wireless applications,” IEEE Trans. on Microwave Theory and Techniques, vol. 51, no. 11, pp. 2154–2164, Nov. 2003.

    Article  Google Scholar 

  29. R. B. Staszewski, D. Leipold, K Muhammad and P. T. Balsara, “Digitally controlled oscillator (DCO)-based architecture for RF frequency synthesis in a deep-submicrometer CMOS process,” IEEE Trans. on Circuits and Systems II, vol. 50, no. 11, pp. 815–828, Nov. 2003.

    Google Scholar 

  30. R. B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P. T. Balsara “1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS,” IEEE Trans. on Circuits and Systems II, vol. 53, no. 3, pp. 220–224, Mar. 2006.

    Google Scholar 

  31. R. B. Staszewski, G. Shriki, and P. T. Balsara, “All-digital PLL with ultra fast acquisition,” Proc. of IEEE Asian Solid-State Circuits Conf., sec. 11-7, pp. 289–292, Nov. 2005, Taipei, Taiwan.

    Google Scholar 

  32. R. B. Staszewski, C. Fernando, and P. T. Balsara, “Event-driven simulation and modeling of phase noise of an RF oscillator,” IEEE Trans. on Circuits and Systems I, vol. 52, no. 4, pp. 723–733, Apr. 2005.

    Article  Google Scholar 

  33. J.-C. Zhuang, K. Waheed, and R. B. Staszewski, “A technique to reduce phase/frequency modulation bandwidth in a polar RF transmitter,” IEEE Trans. on Circuits and Systems I, vol. 57, iss. 8, pp. 2196–2207, Aug. 2010.

    Google Scholar 

  34. I. L. Syllaios, P. T. Balsara, and R. B. Staszewski, “Recombination of envelope and phase paths in wideband polar transmitters,” IEEE Trans. on Circuits and Systems I, vol. 57, iss. 8, pp. 1891–1904, Aug. 2010.

    Google Scholar 

  35. R. B. Staszewski, D. Leipold, and P. T. Balsara, “Direct frequency modulation of an ADPLL for Bluetooth/GSM with injection pulling elimination,” IEEE Trans. on Circuits and Systems II, vol. 52, no. 6, pp. 339–343, June 2005.

    Article  Google Scholar 

  36. K. Muhammad, T. Murphy, and R. B. Staszewski, “Verification of RF SoCs: RF, analog, baseband and software,” Proc. of 2006 IEEE Radio Frequency Integrated Circuits (RFIC) Symp., sec. RTU1C-1, pp. 407–410, June 2006, San Francisco, CA.

    Google Scholar 

  37. R. B. Staszewski, K. Muhammad, and D. Leipold, “Digital RF Processor (DRPTM) for Cellular Phones,” Proc. of IEEE International Conf. on Computer Aided Design (ICCAD), pp. 122–129, Nov. 2005, San Jose, CA.

    Google Scholar 

  38. Y.-C. Ho, R. B. Staszewski, K. Muhammad, C.-M. Hung, D. Leipold, and K. Maggio, “Charge-domain signal processing of direct RF sampling mixer with discrete-time filters in Bluetooth and GSM receivers,” EURASIP Journal on Wireless Communications and Networking, vol. 2006, pp. Article ID 62905, 14 pages, 2006.

    Google Scholar 

  39. K. Muhammad and R. B. Staszewski, “Direct RF sampling mixer with recursive filtering in charge domain,” Proc. of 2004 IEEE Intl. Symp. on Circuits and Systems, sec. ASP-L29.5, pp. I-577–I-580, May 2004.

    Google Scholar 

  40. K. Muhammad, R. B. Staszewski, and C.-M. Hung, “Joint common mode voltage and differential offset voltage control scheme in a low-IF receiver,” Proc. of 2004 IEEE Radio Frequency Integrated Circuits (RFIC) Symp., sec. TU3C-2, pp. 405–408, June 2004.

    Google Scholar 

  41. S. Karvonen, T. Riley, J. Kostamovaara, “A low noise quadrature subsampling mixer,” Proc. of IEEE Intl. Symp. on Circuits and Systems, pp. 790–793, 2001.

    Google Scholar 

  42. S. Lindfors, A. Parssinen and K. A Halonen, “A 3-V 230-MHz CMOS decimation subsampler” IEEE Trans. on Circuits and Systems II, vol. 50, no. 3, pp. 105–117, Mar. 2003.

    Google Scholar 

  43. R. Bagheri, A. Mirzaei, S. Chehrazi, M. Heidari, M. Lee, M Mikhemar, W. Tang, and A. Abidi, “An 800MHz to 5GHz software-defined radio receiver in 90nm CMOS,” Proc. of IEEE Solid-State Circuits Conf., sec. 26.6, pp. 480-481, 667, Feb. 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Bogdan Staszewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Staszewski, R.B. (2011). Digital RF and Digitally-Assisted RF. In: Okada, K., Kousai, S. (eds) Digitally-Assisted Analog and RF CMOS Circuit Design for Software-Defined Radio. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8514-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8514-9_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8513-2

  • Online ISBN: 978-1-4419-8514-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics