Skip to main content

The Influence of Thermo-Plastic Deformation on the Structure and Mechanical Properties of Powder Metallurgy Materials

  • Chapter
Advanced Science and Technology of Sintering
  • 935 Accesses

Abstract

Powder metallurgy materials as a rule have porosity after sintering. Different pressure working processes (extrusion, pressing, forging, rolling etc.) are used to decrease porosity. Pressure working leads not only to consolidation of materials, but to changes in structure and substructure of materials, i.e. to variation of grain size and formation of dislocation substructure as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.M. Ristich, V.I. Trefilov, Yu.V. Milman, I.V. Gridneva, D. Duzevich. Structure and Mechanical Properties of Powder Metallurgy Materials. Cerbian Academy of Science and Art, Belgrad (1992).

    Google Scholar 

  2. V.I. Trefilov, Yu.V. Milman, I.V. Gridneva, Role of plastic deformation in sintering covalent crystals, Powder Metallurgy and Metal Ceramics, 33, 7-8: 357 (1994).

    Article  Google Scholar 

  3. M.L. Bernstein. Structure of deformed metals. Metallurgy, Moscow (1977) (in Russian).

    Google Scholar 

  4. Yu.V. Milman, Structural aspects of warm and cold plastic deformation of crystalline materials, Metal Science and Heat Treatment of Metals, 6:2 (1985) (in Russian).

    Google Scholar 

  5. V.I. Trefilov, Yu.V. Milman, I.V. Gridneva, Characteristic temperature of deformation of crystalline materials, Crystal Res. & Technol. 19, 3: 413 (1984).

    Article  CAS  Google Scholar 

  6. Yu.V. Milman, Characteristic temperature of deformation of materials and cold brittleness of BCC metals and ceramics, in: Mechanics of Creep Brittle Materials-2, A.C.F. Cocks and A.R.S. Ponter, Eds., Elsevier Science, Leicester, UK (1991).

    Google Scholar 

  7. V.I. Trefilov, Yu.V. Milman, R.K. Ivashchenko, Yu.A. Perlovich, A.P. Rachek and N.I. Freze. Structure, Texture and Mechanical Properties of Deformed Molybdenum Alloys. Naukova Dumka, Kiev (1983) (in Russian).

    Google Scholar 

  8. V.I. Trefilov, Yu.V. Milman, S.A. Firstov. Physical Basis of Strength for Refractory Metals. Naukova Dumka, Kiev (1975) (in Russian).

    Google Scholar 

  9. V.I. Trefilov, Yu.V. Milman, Physical basis of thermomechanical treatment of refractory metals, in: 12 th Plansee Seminar, H. Bildstein, H. Ortner Eds., Metallwerk Plansee, Reutte, Austria (1989).

    Google Scholar 

  10. Yu.V. Milman, A.P. Rachek, G.G. Kurdumova, A.V. Abalikchin, N.I. Freze, To the problem of 45° brittleness of the low alloyed molybdenum sheet, Physics of Metals and Physical Metallurgy 48, 2: 309 (1979).

    CAS  Google Scholar 

  11. Yu.V. Milman, The influence of directed alloying and thermomechanical treatment on the structure and mechanical properties of high-purity chromium, molybdenum and tungsten, J.De Physique IV 5: 67 (1995).

    Google Scholar 

  12. R.A. Andrievsky, On the temperature dependence of densification in sintering, Sci.Sintering 16, 1: 3 (1984).

    Google Scholar 

  13. F.R. Nabarro, Deformation of crystals by the motion of single ions, in: Reports of a Conference on Strength of Solids, The Physical Soc. of London, Cambridge (1948).

    Google Scholar 

  14. C. Hering, Diffusional viscosity of a polycrystalline solid, J.Appl. Phys. 21, 5: 437 (1950).

    Article  Google Scholar 

  15. I.M. Lifshits, Theory of dynamic-viscose yielding of polycrystalline solids, Zh. Eksp. Teor. Fiz. 44:1349 (1963).

    Google Scholar 

  16. R.L. Coble, A model for boundary diffusion controlled creep in polycrystalline materials, J.Appl. Phys. 34: 1679 (1963).

    Article  Google Scholar 

  17. M.F. Ashby, R.A. Verrall, Diffusion-accommodated flow and superplasticity, Acta Met. 21, 2: 149 (1973).

    Article  CAS  Google Scholar 

  18. Ya.E. Geguzin. Physics of Sintering, Nauka, Moscow (1984) (in Russian).

    Google Scholar 

  19. Ya.E. Geguzin, A.S. Dzyuba, V.P. Matsokin, Dislocation structures formed in the contact zone of two single crystals, Ukr. Fiz. Zh. 29, 9: 1419 (1984).

    CAS  Google Scholar 

  20. Ya.E. Geguzin, A.K. Emets, V.G. Kononenko, D.V. Pluzhnikova, Dislocation mechanism of high-temperature deformation of elements of the roughness of compressed real surfaces, Poroshk. Metall. 6: 35 (1982).

    Google Scholar 

  21. W. Schatt, Untersudningen an Kupfer-Einkristall Sintermodellen, Kristall und Tecnik. 10, 9: 845 (1975).

    Article  CAS  Google Scholar 

  22. W. Schatt, E. Friedrich, Versetzungsbildung während des Sinterns, Planseeberichte för Pulvermetallurgie 25, 3: 145 (1977).

    CAS  Google Scholar 

  23. W. Schatt, E. Friedrich, Crystal Research and Technology 17, 9: 149 (1982).

    Article  Google Scholar 

  24. E. Friedrich, W. Schatt, Sintering of one-component model systems: nucleation and movement of dislocation in necks, Powder Met. 23, 4: 193 (1980).

    CAS  Google Scholar 

  25. E. Friedrich, W. Schatt, Vergetzungsverrvielfachung als Sinterreaktion, Z. Metallkunde 73, 1: 56 (1982).

    Google Scholar 

  26. M.P. Poire. High-temperature plasticity of crystalline solids, Metallurgiya, Moscow (1982) (in Russian).

    Google Scholar 

  27. F. Garofalo. Laws of creep and long-term strengths of metals, Metallurgiya, Moscow (1968) (in Russian).

    Google Scholar 

  28. I. Weertman, Steady-state creep of crystal, J.Appl. Phys. 28, 10: 1185 (1957).

    Article  Google Scholar 

  29. M.F. Ashby, A first report of deformation-mechanism maps, Acta Met. 20, 7: 887 (1972).

    Article  CAS  Google Scholar 

  30. S. Erdmann-Jesnitzer, F. Günther, Gesetzmäßigkeiten bei Verwachsungsvorgängen von Kristallen. II. R ntgenographische Untersuchungen an verklebten Steinsalzkristallen, Z.Metallkunde 46, 12: 801 (1955).

    CAS  Google Scholar 

  31. Yu.I. Boiko, R.B. Lakhterman, Stresses formed in diffusion sintering sets of real powder particles, Poroshk. Metall. 8: 31 (1976).

    Google Scholar 

  32. W. Schatt, E. Friedrich, Dislocation-activated sintering processes, in: Sintering-85, Plenum Press, N.Y.-L. (1987).

    Google Scholar 

  33. I.P. Arsentyeva, M.M. Ristić, Dislocation structure of nickel powder and its role in the sintering process, in: Sintering-85, Plenum Press, N.Y.-L. (1987).

    Google Scholar 

  34. Yu.V. Milman, N.P. Zakharova, R.K. Ivashchenko and N.I. Freze, Structure and mechanical properties of K-dopped W wire, in: Proc 14 Plansee Seminar, G. Kneringer, P.Röhammer and P. Wilhartitz, Eds., Metallwerk Plansee, Reutte, 1: 128 (1997).

    Google Scholar 

  35. Yu.V. Milman and K.P. Riaboshapka, About «crystallization of dispersion hardened alloys with BCC lattice, Physics of Metals and Metallography (in Russian), 32, 5: 998 (1971).

    CAS  Google Scholar 

  36. Yu.V. Milman, I.V. Gridneva, I.V. Goncharova and V.A. Goncharuk, Effect of crack-tip stress relaxation under load on silicon strength characteristics, Sci. Sintering 30(1): 29 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milman, Y.V. (1999). The Influence of Thermo-Plastic Deformation on the Structure and Mechanical Properties of Powder Metallurgy Materials. In: Stojanović, B.D., Skorokhod, V.V., Nikolić, M.V. (eds) Advanced Science and Technology of Sintering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8666-5_71

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8666-5_71

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4661-6

  • Online ISBN: 978-1-4419-8666-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics