Skip to main content

Simulation of Seasonal Variations in the Local Daylight Climate

  • Chapter
  • First Online:
Daylight Science and Daylighting Technology

Abstract

The natural human biorhythm was mainly influenced by periodic changes of daytime activities and nighttime rest. In the original evolution of the human environment in the equatorial region, the regular daily and yearly changes of sunrise and sunset influenced considerably also vital behavior of the body for permanent 12 h of daytime and the same nighttime period. Migration to northern and southern territories during prehistoric time brought experience of seasonal daylight changes. These were linked with the daytime interval varying in the yearly cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bhavani, R.G. and Khan. M.A.: An intelligent simulation model for blind position control in daylighting schemes in buildings. Build. Simulation, 2, 253–262 (2009)

    Google Scholar 

  • Chróścicki, W. Calculation methods of determining the value of daylight intensity on the ground of photometrical and actinometrical measurements in unobstructed planes. Proc. C.I.E. Session, Paper P.71.24, Barcelona, (1971)

    Google Scholar 

  • CIE 108–1994.: Commission Internationale de l' Eclairage: Guide to recommended practice of daylight measurement. Publ. Central Bureau, Vienna, (1994)

    Google Scholar 

  • Choi, A.S. and Mistrick, R.G.: Analysis of daylight responsive dimming system performance, Building and Environment, 34, 3, 231–243 (1999)

    Article  Google Scholar 

  • Çolak, N. and Onaygil, S.: Lighting Research and Technology. Prediction of the artificial illuminance using neural networks. Lighting Res. Technol., 31, 2, 63–69 (1999)

    Article  Google Scholar 

  • Corbella, O.D.: Sky luminosity categorisation for Rio de Janeiro City, Brazil. Lighting Res. Technol., 29, 2, 69–79 (1997)

    Article  Google Scholar 

  • CSTB Centre de Recherche de Nantes. 1993 CSTB Data. Hourly values. Private riport Joule II, CSTB Nantes (1993)

    Google Scholar 

  • Darula, S. and Kittler, R.: Daylighting availability after one-minute measurements for energy conscious design. Proc. Building Physics Symposium, Budapest. p. 243–248 (1995)

    Google Scholar 

  • Darula, S.: Štatistické charakteristiky exteriérovej osvetlenosti v Bratislave podľa meraní počas rokov 1994 a 1995. (In Slovak. Statistical characteristics of exterior illuminance measured during 1994 - 1995). Světelná technika, 30, 3–4, 42–46 (1997)

    Google Scholar 

  • Darula, S., Kittler, R., Kambezidis, H. and Bartzokas, A.: Reference daylight conditions for energy-saving design in buildings. Final Technical Report, NOA Athens, ICA SAS Bratislava, 126 p (2001)

    Google Scholar 

  • Darula, S. and Kittler, R.: Sunshine duration and daily courses of illuminances in Bratislava. International Journal of Climatology, 24, 14, 1777–1783 (2004)

    Article  ADS  Google Scholar 

  • Darula, S., Kittler, R., Kambezidis, H.D. and Bartzokas, A.: Frequency probabilities of daylight illuminance courses due to sunshine duration. Proc. 1st Symposium Technological developments of daylight applications, Athens, 26–29 (2004)

    Google Scholar 

  • Darula, S. and Kittler, R.: Monthly sunshine duration as a trustworthy basis to predict annual daylight profiles. Proc. 10th European Lighting Conf. Lux Europa 2005, Berlin, 141–144 (2005)

    Google Scholar 

  • Darula, S. and Kittler, R.: Occurrence of standard skies during typical daytime half-days. Renewable Energy, 33, 3, 491–500 (2008a)

    Google Scholar 

  • Darula, S. and Kittler, R.: Contribution to the modelling of illuminance and irradiance daily courses. Przeglad Elektrotechniczny (Electrical Review), 84, 8, 11–14 (2008b)

    Google Scholar 

  • Darula, S. and Kittler, R.: Lighting energy savings due to daylight: time effectiveness based on Bratislava data. Building Res. Journal, 56, 4, 241–253 (2008c)

    Google Scholar 

  • Darula, S, and Kittler, R.: Determination of daylight sources. Proc. of the 1st central European symposium on building physics. Research on Building Physics, Cracow. p. 465–469 (2010).

    Google Scholar 

  • Darula, S. and Kittler, R.: Sunlight and skylight availability. Advances in Energy Research. 1, 4, 133–182, Nova Publ., NY (2011)

    Google Scholar 

  • Dogniaux, R.: Disponibilité de l'éclairement lumineux naturel. Édité par I'lnstitut royal méteorologique de Belgique, Brussels (1978)

    Google Scholar 

  • Dumortier D., Fontoynont M. and Avouac-Bastie P.: Daylight availability in Lyon, Proc. of the European Conference on Energy Performance and door Climate in Buildings. Ecole Nationale des Travaux de l´Etat Lyon, 1315–1320 (1994)

    Google Scholar 

  • Dumortier, D. and Van Roy, F.: Daylight information throught Europe from the SATEL—LIGHT and SODA internet servers. Proc. Conf. 25th Session of the CIE, San Diego, 1, D3–4 – D3–7 (2003)

    Google Scholar 

  • Dumortier, D.: Estimating global irradiances ad illuminances from the second generation of METEOSAT satellites – Results from the HELIOSAT-3 European project. Proc Conf. LUX EUROPA 2005, Berlin, 224–226

    Google Scholar 

  • Feitsma, B.: Daylight illumination measurements at Katwijk (I), NTO, Delft, report E51 (1971)

    Google Scholar 

  • Gillette, G., Pierpoint, W., Treado, S.: A general illuminance model for daylight availability. Journal of lES, 13, 4, 330–340 (1984)

    Google Scholar 

  • Good, E.: Estimating daily sunshine duration over the UK from geostationary satellite data. Weather, 65, 12, 324–328 (2010)

    Article  ADS  Google Scholar 

  • He, J. and Ng, E.: Using satellite-based methods to predict daylight illuminance for subtropical Hong Kong. Lighting Res. Technol., 42, 2, 135–147 (2010)

    Article  ADS  Google Scholar 

  • Hopkinson, R.G., Petherbridge, P., Longmore, J.: Daylighting. Heinemann, London (1966)

    Google Scholar 

  • Ihm, P., Nemri, A. and Krarti, M. Estimation of Lighting energy savings from daylighting. Build. Environment, 44, 3, 509–514 (2009)

    Article  Google Scholar 

  • Janák, M., Hraška, J., Straňák, Z.: Dynamic Assessment of Daylight. Proc. of Workshops Newly Associated States EnerBuild RTD. January 27 - 28, 2003, Prague, Technology Center of the Academy of Science, Czech Republic, p. 28–37 (2003)

    Google Scholar 

  • Janjai, S., Jantarach, T., Laksanaboonsong, J.: A model for calculating global illuminance from satellite data. Renewable Energy, 28, 15, 2355–2365 (2003)

    Article  Google Scholar 

  • Janjai, S., Tohsing, K., Nunez, M. and Laksanaboonsong, J.: A technique for mapping global illuminance from satellite data. Solar Energy, 82, 6, 543–555 (2008a)

    Article  Google Scholar 

  • Janjai, S., Masiri, I., Nunez, M. and Laksanaboonsong, J.: Modeling sky luminance using satellite data to classify sky conditions. Building and Environment, 43, 12, 2059–2073 (2008b)

    Article  Google Scholar 

  • Kambezidis, H.D., Muneer, T., Tzortzis, M. and Arvanitaki, S.: Global and diffuse horizontal solar illuminance: Month-hour distribution for Athens, Greece in 1992. Lighting Res. Technol., 30, 2, 69–74 (1998)

    Article  Google Scholar 

  • Kambezidis, H.D., Oikonomou, Th., Zevgolis; D.: Daylight climatology in the Athens urban environment: guidance for building designers. Lighting Res. Technol., 34, 4, 297 (2002)

    Google Scholar 

  • Kähler, K.: Flächenhelligkeit des Himmels und Beleuchtungsstärke in Räumen. Meteorolgische Zeitschr., 25, 2, 52–57 (1908)

    Google Scholar 

  • Kazanasmaz, T., Günaydina, M. and Binola, S.: Artificial neural networks to predict daylight illuminance in office buildings. Building and Environment, 44, 8, 1751–1757 (2009)

    Article  Google Scholar 

  • Kinghorn, D. and Muneer, T.: Daylight illuminance frequency distribution: Review of computational techniques and new data for UK locations. Lighting Research and Technology, 30, 4, 139–150 (1998)

    Article  Google Scholar 

  • Kittler, R., Kittlerová, L.: Design and evaluation of daylighting. (in Slovak. Návrh a hodnotenie denného osvetlenia). ALFA Bratislava (1968)

    Google Scholar 

  • Kittler, R.: Standardisation of the solar radiation with regard to the prediction of insolation and shading of buildings. Teaching the teachers and building climatology conference, Stockholm, 2, 45 (1972)

    Google Scholar 

  • Kittler, R. and Pulpitlová, J.: Basis of the utilization of daylight. (in Slovak. Základy využívania prírodného svetla). VEDA Bratislava (1988)

    Google Scholar 

  • Kittler, R.: Expected daylight climate standards based on the evaluation of the IDMP data. Proc. Conf. Daylight and solar radiation measurement, Berlin, 244–253 (1989)

    Google Scholar 

  • Kittler, R., Hayman, S., Ruck, N. and Julian, W.: Daylight measurement data: methods of evaluation and representation. Lighting Res. Technol., 24, 4, 173–187 (1992)

    Article  Google Scholar 

  • Kittler R. and Darula S.: Prevailing sky conditions: Identifying simple parameters for definition Lighting Research and Technology, 29, 2, 63–68 (1997)

    Article  Google Scholar 

  • Kittler, R., Perez, R. and Darula, S.: A new generation of sky standards. Proc. The 8th European Lighting Conf. Lux Europa 1997, Amsterdam, 359 – 373 (1997)

    Google Scholar 

  • Kittler, R.: The relation of sky types to relative sunshine duration. Build. Res. Journal, 45, 1, 41–59 (1997)

    Google Scholar 

  • Kittler, R., Perez, R. and Darula, S.: A new generation of sky standards. Final Report. Polygrafia, Bratislava (1998)

    Google Scholar 

  • Kittler, R., Darula, S.: Specification of the local daylight climate and the importance of overcast sky conditions. Light and Engineering, 7, 4, 25–27 (1999)

    Google Scholar 

  • Kleindienst, S., Bodart, M. and Andersen, M.: Graphical Representation of Climate-Based Daylight Performance to Support Architectural Design, LEUKOS, 5, 1, 39–61 (2008)

    Google Scholar 

  • Koga, Y., Anai, K. and Nakamura, H.: Cloud Amount and Daylight Availability, Balkan light '99, 124–129, (1999)

    Google Scholar 

  • Krarti, M., Erickson, P.M. and Hillman, T.C.: A simplified method to estimate energy savings of artificial lighting use from daylighting. Build. Environment, 40, 6, 747–754 (2005)

    Article  Google Scholar 

  • Krochmann, J.: Über die Horizontalbeleuchtungsstärke der Tagesbeleuchtung, Lichtechnik, 15, 559 (1963)

    Google Scholar 

  • Krochmann, J. and Seidl, M.: Quantitative data on daylight for illuminating engineering. Lighting Research and Technology, 6, 3, 165–171 (1974)

    Article  Google Scholar 

  • Kurian, C.P., Aithal, R.S., Bhat, J. and George, V.I.: Robust control of optimisation of energy consumption in daylight-artificial light integrated schemes. Lighting Res. Technol., 40, 7–24 (2008)

    Article  Google Scholar 

  • Li, D.H.W and Lam J.C.: Evaluation of lighting performance in office buildings with daylighting controls. Energy and Buildings, 33, 793–803 (2001)

    Google Scholar 

  • Li, D.H.W., Lam, J.C., Lau, C.C.S.: A Study of Solar Radiation Daylight Illuminance and Sky Luminance Data Measurement for Hong Kong. Architectural Science Review, 45, 21–30 (2002)

    Article  Google Scholar 

  • Li, D.H.W., Lau, C.C.S., Lam, J,C.: Predicting daylight illuminance by computer simulation techniques. Lighting Res. Technol., June, 36, 2, 113–128 (2004)

    Google Scholar 

  • Li, D.H.W., Tang, H.L., Lee, E.W.M., Muneer, T.: Classification of CIE standard skies using probabilistic neural networks. Int. J. Climatol., 30, 2, 305–310 (2010)

    Google Scholar 

  • Mardaljevic, J.: Daylight Simulation: Validation, Sky Models and Daylight Coefficients. PhD thesis. (2000)

    Google Scholar 

  • Mardaljevic, J.: Simulation of annual daylighting profiles for internal illuminance. Lighting Res. Technol., 32, 3, 111–118 (2000)

    Article  Google Scholar 

  • Mardaljevic, J.: Climate-Based Daylight Analysis for Residential Buildings. Impact of various window configurations, external obstructions, orientations and location on useful daylight illuminance. (2008)

    Google Scholar 

  • Markou, M.T., Kambezidis, H.D., Bartzokas, A., Darula, S., Kittler, R.: Generation of daylight reference years for two European cities with different climate: Athens, Greece and Bratislava, Slovakia. Atmospheric Research, 86, 3–4, 315–329 (2007)

    Article  ADS  Google Scholar 

  • Markou, M.T., Bartzokas, A., Kambezidis, D.H.: Daylight climatology in Athens, Greece: types of diurnal variation of illuminance levels. International Journal of Climatology. 29, 14, 2137–2145 (2009)

    Article  ADS  Google Scholar 

  • Matuszawa, T., Koga, Y., Nakamura, H., Anai, K.: Daylight illuminance by cloud type and amount. CIE 24th Session, Warsaw, 1, 2, 56–58 (1999)

    Google Scholar 

  • McCluney, R. and Bornemann, H.J.: The Time Rate of Changing Daylight. Proc. International Daylighting Conference, Long Beach, CA, 36–44 (1986)

    Google Scholar 

  • Moon, P. and Spencer. D.E.: Illumination from a non-uniform sky. Illum. Eng., 37, 10, 707–726 (1942)

    Google Scholar 

  • Muneer, T. and Angus, R.C.: Daylight illuminance models for the United Kingdom. Lighting Res. Technol., 25 3, 113–123, (1993)

    Article  Google Scholar 

  • Muneer, T. and Kinghorn, D.: Predicting daylight availability for the UK using cumulative frequency curves. Proc. Conf. Daylighting ´98. Ottawa, 165–170 (1998)

    Google Scholar 

  • Muneer, T.: Solar Radiation and Daylight Models: For the Energy Efficient Design of Buildings. Butterworth-Heinemann (1997, 2004)

    Google Scholar 

  • Nakamura, H., Oki, M.: Study on the statistic estimation of the horizontal il1uminance from unobstructed sky. J. Light. and Vis. Envir., 3, 1, 23–31 (1979)

    Article  ADS  Google Scholar 

  • Nakamura, H. and Oki, M.: Investigation on the relation between the probability of occurrence of the three skies and relative sunshine duration. Proc. of the CIE 21st Session, Venice, 1, 228–229 (1987)

    Google Scholar 

  • Nabil, A. and Mardaljevic, J.: Useful daylight illuminance: a new paradigm for assessing daylight in buildings, Lighting Res. Technol., 37, 1, 41–59 (2005)

    Article  Google Scholar 

  • Navvab, M., Love, J., Ne´eman, E.: Daylight and solar availability data for Ann Arbor, Michigan U.S.A. Proc. Conf. Daylight and solar radiation measurement. Berlin, 61–69 (1989)

    Google Scholar 

  • Ogisso, S.: Study on daylight sources. Journal of the Fac. Eng., Univ. of Tokyo (B), 28, 2, 103–118 (1965)

    Google Scholar 

  • Olseth, J.A. and Skartveit, A.: Solar irradiance, sunshine duration and daylight illuminance derived from METEOSAT data for some European sites. Theoretical and Applied Climatology, 69, 3–4, 239–252 (2001)

    Article  ADS  Google Scholar 

  • Perez, R., Ineichen, P., Seals, R., Michalsky, J., R. Stewart, R.: Modeling Daylight Availability and Irradiance Components from Direct and Global Irradiance. Solar Energy, 44, 271–289 (1990)

    Google Scholar 

  • Perez-Burgos, A., Bilbao, J., Argimoro de Miguel, A.: An evaluation of illuminance measurements at Valladolid (Spain). Journal of Atmospheric and Solar-Terrestrial Physics, 69, 8, 939–946 (2007)

    Google Scholar 

  • Perradeau, M. and Chauvel, P.: One year´s measurements of luminous climate in Nantes. Proc. International Daylight Conference, Long Beach, CA, p. 83–88 (1986)

    Google Scholar 

  • Petrakis, M., Lykoudis, S., Kassomenos, P., Assimakopoulos, D.N.: Creation of a typical meteorological year for Athens based on daylight measurements. Proc. of the 7th Conference of Union Hellenic of Physicists and Union Cyprus of Physicists. Heraklion, Crete, Greece (in Greek), (1996)

    Google Scholar 

  • Rahim, R., Mulyadi, B., Mulyadi, R.: Classification of daylight and radiation data into three sky conditions by cloud ratio and sunshine duration. Energy and Buildings, 36, 660–666 (2004)

    Article  Google Scholar 

  • Reinhart C.F. and Herkel, S.: An evaluation of RADIANCE based simulations of annual indoor illuminance distributions due to daylight. Proc. of Building Simulation 1999, II. 563–570, Kyoto (1999)

    Google Scholar 

  • Robins, C.R.R.: Daylighting. Design and analysis. Van Nostrand Reinhold Co., New York (1986)

    Google Scholar 

  • Ruck, N.C.: Daylight availability in Australia. Proc. Daylighting and Energy Conservation, Fac. of Arch., Univ. of NSW, 4.1–4.16 (1982)

    Google Scholar 

  • Ruck, N.C.: Representation of skylight availability in Australia in different climatic zones using regression procedures. Lighting Res. Technol., 17, 2, 72–78 (1985)

    Article  Google Scholar 

  • Ruck, N.C. and Selkowitz, S.: A review of measured skylight availability data. Proc. of International Daylighting Conference, Long Beach, CA, 67–71 (1986)

    Google Scholar 

  • Ruiz, E., Soler, A., Robledo, L.: Statistical assessment of a model for global illuminance on inclined surfaces from horizontal global illuminance. Energy Conversion and Management. 43, 5, 693–708 (2002)

    Article  Google Scholar 

  • Schramm, W.: Uber die Verteilung des Lichtes in der Atmosphäre. Schr. Naturwiss. Ver. Schlesw.-Holst., 12, l, 81–129 (1901)

    Google Scholar 

  • Soler, A.: Global and diffuse illuminances: Estimation of monthly average hourly values. Lighting Res. Technol., 22, 4, 193–196 (1990)

    Article  Google Scholar 

  • Tregenza, P.R.: Measured and calculated frequency distributions of daylight illuminance. Lighting Res. and Technol., 18, 2, 71–74 (1986)

    Article  Google Scholar 

  • Ullah, M.B.: International Daylight Measurement Programme — Singapore data III: Building energy savings through daylighting. Lighting Res. Technol., 28, 2, 83–87 (1996)

    Article  Google Scholar 

  • Walkenhorst, O., Luther, J., Reinhart, C., Timmer, J.: Dynamic annual daylight simulations based on one-hour and one-minute means of irradiance data. Solar Energy, 72, 5, 385–395 (2002)

    Article  Google Scholar 

  • Ward, G.J.: The RADIANCE Lighting Simulation and Rendering System. Proc. of '94 SIGGRAPH conference, Computer Graphics, 459–72 (1994)

    Google Scholar 

  • Whipple, G.M.: On the relative duration of sunshine at the royal observatory, Greenwich, and at the Kew observatory, during the year 1877. Quarterly Journal of the Royal Meteorological Society, 4, 28, 201–207 (1878)

    Article  ADS  Google Scholar 

References to Appendix

  • Alshaibani, K.: Determination of CIE Standard General Sky from horizontal and vertical illuminance/irradiance. Proc. World Renewable Energy Congresss, Glasgow (2008)

    Google Scholar 

  • Alshaibani, K.: Finding frequency distribution of CIE Standard General Skies from sky illuminance or irradiance. Lighting Res. Technol., 43, in print (2011)

    Google Scholar 

  • Bartzokas, A., Darula, S., Kambezidis, H. D., Kittler, R.: Comparison between winter and summer sky luminance distribution in Central Europe and in the Eastern Mediterranean. Journ. Atmosph. and Solar Terrestr. Physics, 67, 7, 709–718 (2005)

    Article  ADS  Google Scholar 

  • Chirarattananon, S. and Chaiwiwatworakul, P.: Distributions of sky luminance and radiance of North Bangkok under standard distributions. Renewable Energy, 32, 8, 13328–1345 (2007)

    Article  Google Scholar 

  • Darula, S., Kittler, R., Kambezidis, H., Bartzokas, A.: Reference daylight conditions for energy-saving building design. Final Res. Report of the Greek-Slovak project, ICA SAS, Bratislava (2001)

    Google Scholar 

  • Kittler, R., Darula, S., Perez, R.: A new generation of sky standards. Proc. LuxEuropa Conf., Amsterdam, 359–373 (1997)

    Google Scholar 

  • Kittler, R., Darula, S., Kambezidis, H., Bartzokas, A.: Daylight climate specification based on Athens and Bratislava data. Proc. Lux Europa, 442–449, Reykjavik (2001)

    Google Scholar 

  • Li, D.H.W. and Tang H.L.: Standard skies classification in Hong Kong. Journ. Atmosph. and Solar Terrestr. Physics, 70, 8–9, 1222–1230 (2008)

    Article  ADS  Google Scholar 

  • Li, D.H.W., Cheung, K.L., Tang, H.L., Cheng, C.C.K.: Identifying CIE Standard skies using Vertical Sky Component. Journ. Atmosph. And Solar Terrestr. Physics, 73, 13, 1861–1867 (2011)

    Google Scholar 

  • Markou, M.T., Bartzokas, A. and Kambezidis, H.D.: Daylight climatology in Athens, Greece: types of diurnal variation of illuminance levels. International Journal of Climatology, 29, 14, 2137–2145, (2009)

    Article  ADS  Google Scholar 

  • Ng, E., Cheng, V., Gadi, A., Mu, J., Lee, M.: Defining standard skies for Hong Kong. Build. and Envir., 42, 2, 866–876 (2007)

    Article  Google Scholar 

  • Torres, J.L., Blas, M., García, A., Gracia, A. and deFrancisco, A.: Sky luminance distribution in the North of Iberian Peninsula during winter. Journal of Atmospheric and Solar-Terrestrial Physics, 72, 1147–1154 (2010)

    Google Scholar 

  • Tregenza, P.R.: Standard skies for maritime climates. Lighting Res. Technol., 31, 3, 97–106 (1999)

    Article  Google Scholar 

  • Tregenza, P.R.: Analysing sky scans to obtain frequency distributions of CIE Standard General Skies. Lighting Res. Technol., 36, 4, 271–281 (2004)

    Google Scholar 

  • Wittkopf, S.K. and Soon, L.K.: Analysing sky luminance scans and predicting frequent sky patterns in Singapore. Lighting Res. and Technol., 39, 1, 31–51 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Kittler .

Appendix 6

Appendix 6

6.1.1 Possibilities to Simulate Year-Round Changes of the Local Daylight Climate

Soon after the set of sky standards had been published by Kittler et al. (1997), Tregenza (1999) tried to analyze available sky scan data in several maritime locations and noticed some similarities in the frequency of sky types. In Singapore, Garston, and Sheffield, sky types 1, 3, 4, 8, 11, and 13 seemed to be most relevant. Later, Tregenza (2004) recommended his method of sky scan analysis to obtain the sky type frequency distribution. Thereafter, several IDMP stations used their long-term data to find the most frequent locally occurring sky types, as reported by Ng et al. (2007) or Li and Tang (2008) for Hong Kong, Chirarattananon and Chaiwiwatworakul (2007) for Bangkok, Wittkopf and Soon (2007) for Singapore, and Torres et al. (2010) for northern Spain. However, luminance scan measurements are available only in IDMP research stations, so other approaches to identify prevailing sky types or the daylight climate were sought, such as the classification parameter \( {L_{\rm{vZ}}}/{D_{\rm{v}}} \)(Kittler et al. 2001; Bartzokas et al. 2005), the vertical sky component, i.e., the ratio of vertical to horizontal diffuse illuminance (\( {\hbox{VSC}} = {D_{\rm{vv}}}/{D_{\rm{v}}} \)) (Alshaibani 2008, 2011; Li et al. 2011) or analyzing the daylight climate by applying several meteorological parameters (Markou et al. 2009).

Daylight climate in the temperate region is characterized by almost all sky types as documented by the Bratislava seasonal distribution (winter overcast and summer clear, shown in Fig. A6.1). This seasonal effect increases with the distance of the locality from the ocean (Kittler et al. 2001). In the subtropical or Mediterranean climate, e.g., in Athens, clear sky types (Fig. A6.2) prevail. A more illustrative analysis based on the \( {L_{\rm{vZ}}}/{D_{\rm{v}}} \) parameterization following the ±2.5% strip along each sky type \( {L_{\rm{vZ}}}/{D_{\rm{v}}} \) curve from long-term Bratislava IDMP data which show sunless cases is shown in Fig. A6.3 and sunny cases in Fig. A6.4, same presentation for Athens documents considerable different climate conditions in Figs. A6.5 and A6.6. Owing to the ±2.5% strip selection in this analysis, the overall number of cases taken into consideration in Bratislava was reduced to 113,473 within the range of solar altitudes 5–70°. In the original study (Darula et al. 2001), a comparison was made by taking ±1 and ±2.5% strips to detect differences. However, good agreement with the previously documented data resulted.

Fig. A6.1
figure 21

Seasonal sky type distribution after long-term 1994–1998 data gathered in Bratislava

Fig. A6.2
figure 22

Seasonal sky type distribution after long-term 1992–1996 data gathered in Athens

Fig. A6.3
figure 23

Situations without sun represent prevailing overcast skies in Bratislava

Bratislava and Athens sky type frequencies are thus compared in Figs. A6.3 and A6.4 and Figs. A6.5 and A6.6, where high-frequency peaks are shown in the overcast range in Bratislava, with almost the opposite prevalence and extremely high peaks in the clear sky range in Athens.

Fig. A6.4
figure 24

Situations with sun documenting clear and partly cloudy skies in Bratislava

Fig. A6.5
figure 25

Situations without sun represent cloudy and overcast skies in Athens

Fig. A6.6
figure 26

Situations with sun documenting prevailing clear skies in Athens

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kittler, R., Kocifaj, M., Darula, S. (2011). Simulation of Seasonal Variations in the Local Daylight Climate. In: Daylight Science and Daylighting Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8816-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8816-4_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8815-7

  • Online ISBN: 978-1-4419-8816-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics