Skip to main content

Abstract

Nitric oxide (NO) is one of the first gases discovered by Joseph Priestley in 1772. For more than 200 years, it was considered mainly as an environmental pollutant and product of bacterial metabolism. In 1980, Furchgott and Zawadzki reported a substance released from endothelial cells which is responsible for the relaxation of arterial smooth muscle by acetylcholine’. They named this substance endothelium-derived relaxing factor (EDRF). EDRF was proven to be NO in the late 1980s2-4. Since NO is known to be generated in many different mammalian cells, a deluge of articles has implicated this ubiquitous molecule in a wide variety of regulatory mechanisms ranging from vascular tone to neurotransmissions. NO is also involved in nonspecific immunity and participates in the complex mechanism of tissue injury, acting as a major mediator of inflammation-related processes6,7

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furchgott, R.F. and J.V. Zawadzki (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.Nature288(5789), 373–376.

    Article  PubMed  CAS  Google Scholar 

  2. Feelisch, M., M. te Poel, R. Zamora, A. Deussen, and S. Moncada (1994). Understanding the controversy over the identity of EDRF.Nature368(6466), 62–65.

    Article  PubMed  CAS  Google Scholar 

  3. Palmer, R.M., A.G. Ferrige, and S. Moncada (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor.Nature327(6122), 524–526.

    Article  PubMed  CAS  Google Scholar 

  4. Ignarro, L.J., G.M. Buga, K.S. Wood, R.E. Byrns, and G. Chaudhuri (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide.Proc. Natl. Acad. Sci. USA84(24), 9265–9269.

    Article  PubMed  CAS  Google Scholar 

  5. Moncada, S. and A. Higgs (1993). The L-arginine-nitric oxide pathway.N. Engl. J. Med.329(27), 2002–12.

    Article  PubMed  CAS  Google Scholar 

  6. Nussler, A.K. and T.R. Billiar (1993). Inflammation, immunoregulation, and inducible nitric oxide synthase.J. Leukoc. Biol.54(2), 171–178.

    PubMed  CAS  Google Scholar 

  7. Zamora, R., Y. Vodovotz, and T.R. Billiar (2000). Inducible nitric oxide synthase and inflammatory diseases.Mol. Med.6(5), 347–373.

    PubMed  CAS  Google Scholar 

  8. Hertz, M.I., D.O. Taylor, E.P. Trulock, M.M. Boucek, P.J. Mohacsi, L.B. Edwardset al.(2002). The registry of the international society for heart and lung transplantation: Nineteenth official report-2002.J. Heart Lung Transplant.21(9), 950–970.

    Article  PubMed  Google Scholar 

  9. Lamas, S., P.A. Marsden, G.K. Li, P. Tempst, and T. Michel (1992). Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform.Proc. Natl. Acad. Sci. USA89(14), 6348–6352.

    Article  PubMed  CAS  Google Scholar 

  10. Nishida, K., D.G. Harrison, J.P. Navas, A.A. Fisher, S.P. Dockery, M. Uematsuet al.(1992). Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase.J. Clin. Invest.90(5), 2092–6.

    Article  PubMed  CAS  Google Scholar 

  11. Sessa, W.C., J.K. Harrison, C.M. Barber, D. Zeng, M.E. Durieux, D.D. D’Angeloet al.(1992). Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase.J. Biol. Chem.267(22), 15274–15276.

    PubMed  CAS  Google Scholar 

  12. Bredt, D.S., P.M. Hwang, C.E. Glatt, C. Lowenstein, R.R. Reed, and S.H. Snyder (1991). Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase.Nature351(6329), 714–718.

    Article  PubMed  CAS  Google Scholar 

  13. Xie, Q.W., H.J. Cho, J. Calaycay, R.A. Mumford, K.M. Swiderek, T.D. Leeet al.(1992). Cloning and characterization of inducible nitric oxide synthase from mouse macrophages.Science256(5054), 225–228.

    Article  PubMed  CAS  Google Scholar 

  14. Lyons, C.R., G.J. Orloff, and J.M. Cunningham (1992). Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line.J. Biol. Chem.267(9), 6370–6374.

    PubMed  CAS  Google Scholar 

  15. Geller, D.A., C.J. Lowenstein, R.A. Shapiro, A.K. Nussler, M. Di Silvio, S.C. Wanget al.(1993). Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes.Proc. Natl. Acad. Sci. USA90(8),3491–3495.

    Article  PubMed  CAS  Google Scholar 

  16. Chartrain, N.A., D.A. Geller, RP. Koty, N.F. Sitrin, A.K. Nussler, E.P. Hoffmanet al.(1994). Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene.J. Biol. Chem.269(9), 6765–6772.

    PubMed  CAS  Google Scholar 

  17. Leber, A., B. Hemmens, B. Klosch, W. Goessler, G. Raber, B. Mayeret al.(1999). Characterization of recombinant human endothelial nitric-oxide synthase purified from the yeastPichia pastoris. J. Biol. Chem.274(53), 37658–37664.

    Article  CAS  Google Scholar 

  18. Ghafourifar, P. and C. Richter (1997). Nitric oxide synthase activity in mitochondria.FEBS Lett.418(3), 291–296.

    Article  PubMed  CAS  Google Scholar 

  19. Ghafourifar, P., U. Schenk, S.D. Klein, and C. Richter (1999). Mitochondrial nitric-oxide synthase stimulation cUSAes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation.J. Biol. Chem.274(44), 31185–31188.

    Article  PubMed  CAS  Google Scholar 

  20. Bredt, D.S. and S.H. Snyder (1994). Nitric oxide: A physiologic messenger molecule.Annu. Rev. Biochem.63, 175–195.

    Article  PubMed  CAS  Google Scholar 

  21. Forstermann, U., E.I. Closs, J.S. Pollock, M. Nakane, P. Schwarz, I. Gathet al.(1994). Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions.Hypertension.23(6 Pt 2), 1121–1131.

    Article  PubMed  CAS  Google Scholar 

  22. Morris, S.M. Jr. and T.R. Billiar (1994). New insights into the regulation of inducible nitric oxide synthesis. Am.J. Physiol.266(6 Pt 1), E829–E839.

    PubMed  CAS  Google Scholar 

  23. Nathan, C. and Q.W. Xie (1994). Nitric oxide synthases: Roles, tolls, and controls.Cell.78(6), 915–918.

    Article  PubMed  CAS  Google Scholar 

  24. Hinescu, M.E. (2001). Cardiac apoptosis: From organ failure to allograft rejection.J. Cell Mol. Med.5(2), 143–152.

    Article  PubMed  CAS  Google Scholar 

  25. Hernandez, L.A., M.B. Grisham, and D.N. Granger (1987). A role for iron in oxidant-mediated ischemic injury to intestinal microvasculature.Am. J. Physiol.253(1 Pt 1), G49–G53.

    PubMed  CAS  Google Scholar 

  26. Kloner, R.A., K. Przyklenk, and P. Whittaker (1989). Deleterious effects of oxygen radicals in ischemia/reperfusion. Resolved and unresolved issues.Circulation80(5), 1115–1127.

    Article  PubMed  CAS  Google Scholar 

  27. Beckman, J.S. and W.H. Koppenol (1996). Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly.Am. J. Physiol.271(5 Pt 1), C1424–C1437.

    Google Scholar 

  28. Wink, D.A., I. Hanbauer, M.C. Krishna, W. DeGraff, J. Gamson, and J.B. Mitchell (1993). Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species.Proc. Natl. Acad. Sci. USA90(21), 9813–9817.

    Article  PubMed  CAS  Google Scholar 

  29. Ma, X.L., P.S. Tsao, G.E. Viehman, and A.M. Lefer (1991). Neutrophil-mediated vasoconstriction and endothelial dysfunction in low-flow perfusion-reperfused cat coronary artery.Circ. Res.69(1), 95–106.

    Article  PubMed  CAS  Google Scholar 

  30. Bolli, R. (1991). Oxygen-derived free radicals and myocardial reperfusion injury: An overview.Cardiovasc. Drugs Ther.5 (Supp12), 249–268.

    Article  PubMed  Google Scholar 

  31. Nossuli, T.O., R. Hayward, R. Scalia, and A.M. Lefer (1997). Peroxynitrite reduces myocardial infarct size and preserves coronary endothelium after ischemia and reperfusion in cats.Circulation96(7), 2317–2324.

    Article  PubMed  CAS  Google Scholar 

  32. Lefer, D.J., R. Scalia, B. Campbell, T. Nossuli, R. Hayward, M. Salamonet al.(1997). Peroxynitrite inhibits leukocyte-endothelial cell interactions and protects against ischemia-reperfusion injury in rats.J. Clin. Invest.99(4), 684–691.

    Article  PubMed  CAS  Google Scholar 

  33. Beckman, J.S., T.W. Beckman, J. Chen, P.A. Marshall, and B.A. Freeman (1990). Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide.Proc. Natl. Acad. Sci. USA87(4), 1620–1624.

    Article  PubMed  CAS  Google Scholar 

  34. Ku, D.D. (1982). Coronary vascular reactivity after acute myocardial ischemia.Science218(4572), 576–578.

    Article  PubMed  CAS  Google Scholar 

  35. Pearson, P.J., P.J. Lin, and H.V. Schaff (1992). Global myocardial ischemia and reperfusion impair endothelium-dependent relaxations to aggregating platelets in the canine coronary artery. A possible cUSAe of vasospasm after cardiopulmonary bypass.J. Thorac. Cardiovasc. Surg.103(6), 1147–1154.

    PubMed  CAS  Google Scholar 

  36. Engelman, D.T., M. Watanabe, R.M. Engelman, J.A. Rousou, J.E. Flack III, D.W. Deatonet al.(1995). Constitutive nitric oxide release is impaired after ischemia and reperfusion.J. Thorac. Cardiovasc. Surg. 110(4 Pt 1), 1047–1053.

    Article  PubMed  CAS  Google Scholar 

  37. Giraldez, R.R., A. Panda, Y. Xia, S.P. Sanders, and J.L. Zweier (1997). Decreased nitric-oxide synthase activity cUSAes impaired endothelium-dependent relaxation in the postischemic heart.J. Biol. Chem.272(34), 21420–21426.

    Article  PubMed  CAS  Google Scholar 

  38. Gaballa, M.A. and S. Goldman (1999). Overexpression of endothelium nitric oxide synthase reverses the diminished vasorelaxation in the hindlimb vasculature in ischemic heart failure in vivo.J. Mol. Cell Cardiol.31(6), 1243–1252.

    Article  PubMed  CAS  Google Scholar 

  39. Wang, Q.D., E. Morcos, P. Wiklund, and J. Pemow (1997). L-arginine enhances functional recovery and Ca(2+)-dependent nitric oxide synthase activity after ischemia and reperfusion in the rat heart.J. Cardiovasc. Pharmacol.29(2), 291–296.

    Article  PubMed  CAS  Google Scholar 

  40. Wildhirt, S.M., R.R. Dudek, H. Suzuki, V. Pinto, K.S. Narayan, and R.J. Bing (1992). Immunohistochemistry in the identification of nitric oxide synthase isoenzymes in myocardial infarction.Cardiovasc. Res.29(4), 526–531.

    Google Scholar 

  41. Seccombe, J.F. and H.V. Schaff (1995). Coronary artery endothelial function after myocardial ischemia and reperfusion.Ann. Thorac. Surg.60(3), 778–788.

    Article  PubMed  CAS  Google Scholar 

  42. Ma, X.L., A.S. Weyrich, D.J. Lefer, and A.M. Lefer (1993). Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium.Circ. Res.72(2), 403–412.

    Article  PubMed  CAS  Google Scholar 

  43. Bolli, R. (2001). Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: An overview of a decade of research.J. Mol. Cell Cardiol.33(11), 1897–1918.

    Article  PubMed  CAS  Google Scholar 

  44. Flogel, U., U.K. Decking, A. Godecke, and J. Schrader (1999). Contribution of NO to ischemia-reperfusion injury in the saline-perfused heart: A study in endothelial NO synthase knockout mice.J. Mol. Cell Cardiol.31(4), 827–836.

    Article  PubMed  CAS  Google Scholar 

  45. Kanno, S., P.C. Lee, Y. Zhang, C. Ho, B.P. Griffith, L.L. Shears IIet al.(2000). Attenuation of myocardial ischemia/reperfusion injury by superinduction of inducible nitric oxide synthase.Circulation101(23), 2742–2748.

    Article  PubMed  CAS  Google Scholar 

  46. Langrehr, J.M., R.A. Hoffman, T.R. Billiar, K.K. Lee, W.H. Schraut, and R.L. Simmons (1991). Nitric oxide synthesis in the in vivo allograft response: A possible regulatory mechanism.Surgery110(2), 335–342.

    PubMed  CAS  Google Scholar 

  47. Cattell, V., J. Smith, A. Jansen, V. Riveros-Moreno, and S. Moncada (1994). Localization of inducible nitric oxide synthase in acute renal allograft rejection in the rat.Transplantation58(12), 1399–1402.

    PubMed  CAS  Google Scholar 

  48. Langrehr, J.M., D.A. White, R.A. Hoffman, and R.L. Simmons (1993). Macrophages produce nitric oxide at allograft sites.Ann. Surg.218(2), 159–166.

    Article  PubMed  CAS  Google Scholar 

  49. Joies, J.A., I.H. Vos, H.J. Grone, and T.J. Rabelink (2002). Inducible nitric oxide synthase in renal transplantation.Kidney Int.61(3), 872–875.

    Article  Google Scholar 

  50. Michel, T. and O. Feron (1997). Nitric oxide synthases: Which, where, how, and why?J. Clin. Invest.100(9), 2146–2152.

    Article  PubMed  CAS  Google Scholar 

  51. Kelly, R.A., J.L. Balligand, and T.W. Smith (1996). Nitric oxide and cardiac function.Circ. Res.79(3), 363–380.

    Article  PubMed  CAS  Google Scholar 

  52. Langrehr, J.M., N. Murase, P.M. Markus, X. Cai, P. Neuhaus, W. Schrautet al.(1992). Nitric oxide production in host-versus-graft and graft-versus-host reactions in the rat.J. Clin. Invest.90(2), 679–683.

    Article  PubMed  CAS  Google Scholar 

  53. Green, L.C., K. Ruiz de Luzuriaga, D.A. Wagner, W. Rand, N. Istfan, V.R. Younget al.(1981). Nitrate biosynthesis in man.Proc. Natl. Acad. Sci. USA78(12), 7764–7768.

    Article  PubMed  CAS  Google Scholar 

  54. Worrall, N.K., W.D. Lazenby, T.P. Misko, T.S. Lin, C.P. Rodi, P.T. Manninget al.(1995). Modulation of in vivo alloreactivity by inhibition of inducible nitric oxide synthase.J. Exp. Med.181(1), 63–70.

    Article  PubMed  CAS  Google Scholar 

  55. Tanaka, S., W. Kamiike, T. Ito, S. Nozaki, F. Uchikoshi, M. Miyataet al.(1995). Evaluation of nitric oxide during acute rejection after heart transplantation in rats.Transplant. Proc.27(1), 576–577.

    PubMed  CAS  Google Scholar 

  56. Wildhirt, S.M., M. Weis, C. Schulze, N. Conrad, S. Pehlivanli, G. Riederet al.(2001). Expression of endomyocardial nitric oxide synthase and coronary endothelial function in human cardiac allografts.Circulation104(12 Suppl 1),1336–1343.

    Google Scholar 

  57. Mugge, A., S. Kurucay, R.H. Boger, S.M. Bode-Boger, H.J. Schafers, T. Wahlerset al.(1996). Urinary nitrate excretion is increased in cardiac transplanted patients with acute graft rejection.Clin. Transplant.10(3), 298–305.

    PubMed  CAS  Google Scholar 

  58. Koglin, J., T. Glysing-Jensen, J.S. Mudgett, and M.E. Russell (1998). NOS2 mediates opposing effects in models of acute and chronic cardiac rejection: Insights from NOS2-knockout mice. Am.J. Pathol.153(5), 1371–1376.

    Article  PubMed  CAS  Google Scholar 

  59. Yang, X., N. Chowdhury, B. Cai, J. Brett, C. Marboe, R.R. Sciaccaet al.(1994). Cannon, Induction of myocardial nitric oxide synthase by cardiac allograft rejection.J. Clin. Invest.94(2), 714–721.

    Article  PubMed  CAS  Google Scholar 

  60. Worall, N.K., T.P. Misko, P.M. Sullivan, J.J. Hui, and T.B. Ferguson Jr. (1996). Inhibition of inducible nitric oxide synthase attenuates established acute cardiac allograft rejection.Ann. Thorac. Surg.62(2), 378–385.

    Article  Google Scholar 

  61. de Vera, M.E., R.A. Shapiro, A.K. Nussler, J.S. Mudgett, R.L. Simmons, S.M. Morris, Jr.et al.(1996). Transcriptional regulation of human inducible nitric oxide synthase (NOS2) gene by cytokines: initial analysis of the human NOS2 promoter.Proc. Natl. Acad. Sci. USA93(3), 1054–1059.

    Article  PubMed  Google Scholar 

  62. Chu, S.C., H.P. Wu, T.C. Banks, N.T. Eissa, and J. Moss (1995). Structural diversity in the 5’-untranslated region of cytokine-stimulated human inducible nitric oxide synthase mRNA.J. Biol. Chem.270(18), 10625–10630.

    Article  PubMed  CAS  Google Scholar 

  63. Eberhardt, W., C. Pluss, R. Hummel, and J. Pfeilschifter (1998). Molecular mechanisms of inducible nitric oxide synthase gene expression by IL-lbeta and cAMP in rat mesangial cells.J. Immunol.160(10), 4961–4969.

    PubMed  CAS  Google Scholar 

  64. Winlaw, D.S., C.G. Schyvens, G.A. Smythe, Z.Y. Du, S.P. Rainer, R.S. Lordet al.(1995). Selective inhibition of nitric oxide production during cardiac allograft rejection causes a small increase in graft survival.Transplantation60(1), 77–82.

    Article  PubMed  CAS  Google Scholar 

  65. Shiraishi, T., S.R. DeMeester, N.K. Worrall, J.H. Ritter, T.P. Misko, T.B. Ferguson, Jr.et al.(1995). Inhibition of inducible nitric oxide synthase ameliorates rat lung allograft rejection.J. Thorac. Cardiovasc. Surg.110(5), 1449–1459.

    Article  PubMed  CAS  Google Scholar 

  66. Szabolcs, M.J., J. Sun, N. Ma, A. Albala, R.R. Sciacca, G.B. Philipset al.(2002). Effects of selective inhibitors of nitric oxide synthase-2 dimerization on acute cardiac allograft rejection.Circulation106(18), 2392–2396.

    Article  PubMed  CAS  Google Scholar 

  67. Szabolcs, M.J., S. Ravalli, O. Minanov, R.R. Sciacca, R.E. Michler, and P.J. Cannonet al.(1998). Apoptosis and increased expression of inducible nitric oxide synthase in human allograft rejection.Transplantation65(6) 804–812.

    Article  PubMed  CAS  Google Scholar 

  68. Szabolcs, M., R.E. Michler, X. Yang, W. Aji, D. Roy, E. Athanet al.(1996). Apoptosis of cardiac myocytes during cardiac allograft rejection. Relation to induction of nitric oxide synthase.Circulation94(7), 1665–1673.

    Article  PubMed  CAS  Google Scholar 

  69. Baldus, S., J.P. Eiserich, A. Mani, L. Castro, M. Figueroa, R. Chumleyet al.(2001). Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration.J. Clin. Invest.108(12), 1759–1770.

    PubMed  CAS  Google Scholar 

  70. Suzuki, H., S.M. Wildhirt, R.R. Dudek, K.S. Narayan, A.H. Bailey, and R.J. Bing (1996). Induction of apoptosis in myocardial infarction and its possible relationship to nitric oxide synthase in macrophages.Tissue Cell.28(1), 89–97.

    Article  PubMed  CAS  Google Scholar 

  71. Haywood, G.A., P.S. Tsao, H.E. von der Leyen, M.J. Mann, P.J. Keeling, P.T. Trindade, Expression of inducible nitric oxide synthase in human heart failure.Circulation93(6), 1087–1094.

    Google Scholar 

  72. Lewis, N.P., P.S. Tsao, P.R. Rickenbacher, C. Xue, R.A. Johns, G.A. Haywoodet al.(1996). Induction of nitric oxide synthase in the human cardiac allograft is associated with contractile dysfunction of the left ventricle.Circulation.93(4), 720–729.

    Article  PubMed  CAS  Google Scholar 

  73. Costanzo, M.R., D.C. Naftel, M.R. Pritzker, J.K. Heilman III, J.P. Boehmer, S.C. Brozenaet al.(1998). Heart transplant coronary artery disease detected by coronary angiography: A multiinstitutional study of preoperative donor and recipient risk factors. Cardiac Transplant Research Database.J. Heart Lung Transplant.17(8), 744–753.

    PubMed  CAS  Google Scholar 

  74. Uretsky, B.F., S. Murali, P.S. Reddy, B. Rabin, A. Lee, B.P. Griffithet al.(1987). Development of coronary artery disease in cardiac transplant patients receiving immunosuppressive therapy with cyclosporine and prednisone.Circulation76(4), 827–834.

    Article  PubMed  CAS  Google Scholar 

  75. Keogh, A.M., H.A. Valantine, S.A. Hunt, J.S. Schroeder, N. McIntosh, P.E. Oyeret al.(1992). Impact of proximal or midvessel discrete coronary artery stenoses on survival after heart transplantation.J. Heart Lung Transplant.11(5), 892–901.

    PubMed  CAS  Google Scholar 

  76. Salomon, R.N., C.C. Hughes, F.J. Schoen, D.D. Payne, J.S. Pober, and P. Libby (1991). Human coronary transplantation-associated arteriosclerosis. Evidence for a chronic immune reaction to activated graft endothelial cells.Am. J. Pathol.138(4), 791–798.

    PubMed  CAS  Google Scholar 

  77. Rose, M.L. (1996). Role of antibody and indirect antigen presentation in transplant-associated coronary artery vasculopathy. J.Heart Lung Transplant.15(4), 342–349.

    PubMed  CAS  Google Scholar 

  78. Johnson, M.R. (1992). Transplant coronary disease: Nonimmunologic risk factors.J. Heart Lung Transplant.11(3 Pt 2), S124–S132.

    PubMed  CAS  Google Scholar 

  79. Park, J.W., M. Merz, P. Braun, and M. Vermeltfoort (1996). Lipid disorder and transplant coronary artery disease in long-term survivors of heart transplantation.J. Heart Lung Transplant.15(6), 572–579.

    PubMed  CAS  Google Scholar 

  80. Sasaguri, S., Y. Eishi, T. Tsukada, M. Sunamori, A. Suzuki, F. Numanoet al.(1990). Role of smooth-muscle cells and macrophages in cardiac allograft arteriosclerosis in rabbits.J. Heart Transplant.9(1), 18–24.

    PubMed  CAS  Google Scholar 

  81. Billingham, M.E. (1987). Cardiac transplant atherosclerosis.Transplant. Proc.19(4 Suppl 5), 19–25.

    PubMed  CAS  Google Scholar 

  82. Adams, D.H., M.E. Russell, W.W. Hancock, M.H. Sayegh, L.R. Wyner, and M.J. Karnovsky (1993). Chronic rejection in experimental cardiac transplantation: Studies in the Lewis-F344 model.Immunol. Rev. 1345–19.

    Article  PubMed  CAS  Google Scholar 

  83. Young-Ramsaran, J.O., R.H. Hruban, G.M. Hutchins, T.H. Phelps, W.A. Baumgartner, B.A. Reitzet al.(1993). Ultrastructural evidence of cell-mediated endothelial cell injury in cardiac transplant-related accelerated arteriosclerosis.Ultrastruct. Pathol.17(2), 125–136.

    Article  PubMed  CAS  Google Scholar 

  84. Libby, P. and H. Tanaka (1994). The pathogenesis of coronary arteriosclerosis (“chronic rejection”) in transplanted hearts.Clin. Transplant.8(3 Pt 2), 313–318.

    PubMed  CAS  Google Scholar 

  85. Duquesnoy, R.J. and A.J. Demetris (1995). Immunopathology of cardiac transplant rejection.Curr. Opin. Cardiol.10(2), 193–206.

    Article  PubMed  CAS  Google Scholar 

  86. Russell, M.E., A.F. Wallace, L.R. Wyner, J.B. Newell, and M.J. Karnovsky (1995). Upregulation and modulation of inducible nitric oxide synthase in rat cardiac allografts with chronic rejection and transplant arteriosclerosis.Circulation.92(3), 457–464.

    Article  PubMed  CAS  Google Scholar 

  87. Rabinovitch, M., S. Molossi, and N. Clusaell (1995). Cytokine-mediated fibronectin production and transendothelial migration of lymphocytes in the mechanism of cardiac allograft vascular disease: Efficacy of novel therapeutic approaches.J. Heart Lung Transplant.14(6 Pt 2), S116–5123.

    PubMed  CAS  Google Scholar 

  88. Treasure, C.B., J.L. Klein, W.S. Weintraub, J.D. Talley, M.E. Stillabower, A.S. Kosinskiet al.(1995). Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease.N. Engl. J. Med.332(8), 481–487.

    Article  PubMed  CAS  Google Scholar 

  89. Weis, M. and W. von Scheidt (1997). Cardiac allograft vasculopathy: A review.Circulation96(6), 2069–2077.

    Article  PubMed  CAS  Google Scholar 

  90. Ross, R. (1993). The pathogenesis of atherosclerosis: A perspective for the 1990s.Nature362(6423), 801–809.

    Article  PubMed  CAS  Google Scholar 

  91. Davis, S.F., A.C. Yeung, I.T. Meredith, F. Charbonneau, P. Ganz, A.P. Selwynet al.(1996). Early endothelial dysfunction predicts the development of transplant coronary artery disease at 1 year posttransplant.Circulation.93(3), 457–462.

    Article  PubMed  CAS  Google Scholar 

  92. Marti, V., I. Romeo, R. Aymat, J. Garcia, P. Guiteras, M. Ballesteret al.(2001). Coronary endothelial dysfunction as a predictor of intimal thickening in the long term after heart transplantation.J. Thorac. Cardiovasc. Surg.122(6), 1174–1180.

    Article  PubMed  CAS  Google Scholar 

  93. Sabate, M., A. Cequier, N. Manito, J. Mauri, J. Roca, J.A. Gomez-Hospitalet al.(2000). Predictive factors and long-term evolution of early endothelial dysfunction after cardiac transplantation.J. Heart Lung Transplant.19(5), 453–461.

    Article  PubMed  CAS  Google Scholar 

  94. Lee, P.C., Z.L. Wang, S. Qian, S.C. Watkins, A. Lizonova, I. Kovesdiet al.(2000). Endothelial nitric oxide synthase protects aortic allografts from the development of transplant arteriosclerosis.Transplantation69(6), 1186–1192.

    Article  PubMed  CAS  Google Scholar 

  95. Akyurek, L.M., B.C. Fellstrom, Z.Q. Yan, G.K. Hansson, K. Funa, and E. Larsson (1996). Inducible and endothelial nitric oxide synthase expression during development of transplant arteriosclerosis in rat aortic grafts. Am.J. Pathol.149(6), 1981–1990.

    PubMed  CAS  Google Scholar 

  96. Ravalli, S., A. Albala, M. Ming, M. Szabolcs, A. Barbone, R.E. Michleret al.(1998). Inducible nitric oxide synthase expression in smooth muscle cells and macrophages of human transplant coronary artery disease.Circulation97(23), 2338–2345.

    Article  PubMed  CAS  Google Scholar 

  97. Lafond-Walker, A., C.L. Chen, S. Augustine, T.C. Wu, R.H. Hruban, and C.J. Lowenstein (1997). Inducible nitric oxide synthase expression in coronary arteries of transplanted human hearts with accelerated graft arteriosclerosis. Am.J. Pathol.151(4), 919–925.

    PubMed  CAS  Google Scholar 

  98. Baker, C.S., R.J. Hall, T.J. Evans, A. Pomerance, J. Maclouf, C. Creminonet al.(1999). Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages.Arterioscler. Thromb. Vasc. Biol. 19(3)646–655.

    Article  PubMed  CAS  Google Scholar 

  99. Kibbe, M., T. Billiar, and E. Tzeng (1999). Inducible nitric oxide synthase and vascular injury.Cardiovasc. Res.43(3), 650–657.

    Article  PubMed  CAS  Google Scholar 

  100. Yan, Z.Q., T. Yokota, W. Zhang, and G.K. Hansson (1996). Expression of inducible nitric oxide synthase inhibits platelet adhesion and restores blood flow in the injured artery.Circ. Res. 79(1)38–44.

    Article  PubMed  CAS  Google Scholar 

  101. Mellion, B.T., L.J. Ignarro, C.B. Myers, E.H. Ohlstein, B.A. Ballot, A.L. Hymanet al.(1983). Inhibition of human platelet aggregation by S-nitrosothiols. Heme-dependent activation of soluble guanylate cyclase and stimulation of cyclic GMP accumulation.Mol. Pharmacol.23(3), 653–664.

    PubMed  CAS  Google Scholar 

  102. Radomski, M.W., R.M. Palmer, and S. Moncada (1987). Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium.Lancet.2(8567), 1057–1058.

    Article  PubMed  CAS  Google Scholar 

  103. Hickey, M.J., K.A. Sharkey, E.G. Sihota, P.H. Reinhardt, J.D. Macmicking, C. Nathanet al.(1997). Inducible nitric oxide synthase-deficient mice have enhanced leukocyte-endothelium interactions in endotoxemia.FASEB J.11(12), 955–964.

    PubMed  CAS  Google Scholar 

  104. Guo, J.P., M.M. Panday, P.M. Consigny, and A.M. Lefer (1995). Mechanisms of vascular preservation by a novel NO donor following rat carotid artery intimal injury. Am.J. Physiol. 269(3 Pt 2), H1122–H1131.

    PubMed  CAS  Google Scholar 

  105. Tzeng, E., Y.M. Kim, B.R. Pitt, A. Lizonova, I. Kovesdi, and T.R. Billiar (1997). Adenoviral transfer of the inducible nitric oxide synthase gene blocks endothelial cell apoptosis.Surgery122(2), 255–263.

    Article  PubMed  CAS  Google Scholar 

  106. Garg, U.C. and A. Hassid (1989). Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells.J. Clin. Invest.83(5), 1774–1777.

    Article  PubMed  CAS  Google Scholar 

  107. McNamara, D.B., B. Bedi, H. Aurora, L. Tena, L.J. Ignarro, P.J. Kadowitzet al.(1993). L-arginine inhibits balloon catheter-induced intimai hyperplasia.Biochem. Biophys. Res. Commun. 193(1)291–296.

    Article  PubMed  CAS  Google Scholar 

  108. Marks, D.S., J.A. Vita, J.D. Folts, J.F. Keaney Jr, G.N. Welch, and J. Loscalzo (1995). Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide.J. Clin. Invest. 96(6)2630–2638.

    Article  PubMed  CAS  Google Scholar 

  109. Groves, P.H., A.P. Banning, W.J. Penny, A.C. Newby, H.A. Cheadle, and M.J. Lewis (1995). The effects of exogenous nitric oxide on smooth muscle cell proliferation following porcine carotid angioplasty.Cardiovasc Res. 30(1)87–96.

    PubMed  CAS  Google Scholar 

  110. Lee, J.S., C. Adrie, H.J. Jacob, J.D. Roberts Jr, W.M. Zapol, and K.D. Bloch (1996). Chronic inhalation of nitric oxide inhibits neointimal formation after balloon-induced arterial injury.Circ. Res. 78(2)337–342.

    Article  PubMed  CAS  Google Scholar 

  111. Kibbe, M.R., J. Li, S. Nie, S.C. Watkins, A. Lizonova, I. Kovesdiet al.(2000). Inducible nitric oxide synthase (iNOS) expression upregulates p21 and inhibits vascular smooth muscle cell proliferation through p42/44 mitogen-activated protein kinase activation and independent of p53 and cyclic guanosine monophosphate.J. Vasc. Surg.31(6), 1214–1228.

    PubMed  CAS  Google Scholar 

  112. Shears, L.L., N. Kawaharada, E. Tzeng, T.R. Billiar, S.C. Watkins, I. Kovesdiet al.(1997). Inducible nitric oxide synthase suppresses the development of allograft arteriosclerosis.J. Clin. Invest. 100(8)2035–2042.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kanno, S., Shears, L.L., Billiar, T.R. (2004). Nitric Oxide, Oxygen Radicals. In: Wilkes, D.S., Burlingham, W.J. (eds) Immunobiology of Organ Transplantation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8999-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8999-4_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4754-5

  • Online ISBN: 978-1-4419-8999-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics