Skip to main content

Block-Layer Concept for the Layered Cobalt Oxide: A Design for Thermoelectric Oxides

  • Chapter
Chemistry, Physics, and Materials Science of Thermoelectric Materials

Part of the book series: Fundamental Materials Research ((FMRE))

Abstract

A thermoelectric material is a material which generates electricity from heat through the Seebeck effect, and pumps heat through the Peltier effect. The thermo-electric conversion efficiency is characterized by the figure of merit Z= S 2/ρκ. (S, ρ, and κ are thermopower, resistivity, and thermal conductivity.) In order to attain the high thermoelectric efficiency, thermoelectric materials need large thermopower, low resistivity and low thermal conductivity. In conventional thermoelectric materials, however, S, ρ, and κcannot be controlled independently, because they depend on the carrier density. The thermoelectric performance is optimized near a carrier density of 1019cm-3, which is a typical value for a degenerate semiconduc-tor. Actually, the thermoelectric materials were mainly searched in the degenerate semiconductors of high mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B56, R12685–12687 (1997).

    Google Scholar 

  2. R. Funahashi and I. Matsubara, Appl. Phys. Lett. 79, 362–364 (2001).

    Article  CAS  Google Scholar 

  3. T. Ito and I. Terasaki, Jpn. J. Appl. Phys. 39, 6658–6660 (2000).

    Article  Google Scholar 

  4. H. Leligny, D. Grebille, O. Pérez, A. -C, Masset, M. Hervieu, C. Michel, and B. Raveau, C. R. Acad. Sci. Paris, Série IIc 2, 409–414 (1999).

    CAS  Google Scholar 

  5. S. Li, R. Funahashi, I. Matsubara, K. Ueno, and H. Yamada, J. Mater. Chem. 9, 1659–1660 (1999).

    Article  CAS  Google Scholar 

  6. Y. Miyazaki, K. Kudo, M. Akoshima, Y. Ono, Y. Koike, and T. Kajitani, Jpn. J. Appl. Phys. 39, L531–533 (2000).

    Article  Google Scholar 

  7. A. C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, and B. Raveau, Phys. Rev. B62, 166–175 (2000).

    Google Scholar 

  8. Y. Miyazaki, M. Onode, T. Oku, M. Kikuchi, Y. Ishii, Y. Ono, Y. Morii, and T. Kajitani, J. Phys. Soc. Jpn. 71, 491–497 (2002).

    Article  CAS  Google Scholar 

  9. S. Lambert, H. Leligny, and D. Grebille, J. Solid State Chem. 160, 322–331 (2001).

    Article  CAS  Google Scholar 

  10. S. Hebert, S. Lambert, D. Pelloquin, and A. Maignan, Phys. Rev. B64, 172101–1-172101–4 (2001).

    Google Scholar 

  11. I. Terasaki, Mater. Trans. 42, 951–955 (2001).

    Article  CAS  Google Scholar 

  12. Y. Tokura and T. Arima, Jpn. J. Appl. Phys. 29, 2388–2402 (1990).

    Article  CAS  Google Scholar 

  13. H. Maeda, Y. Tanaka, M. Fukutumi, and T. Asano, Jpn. J. Appl. Phys. 27, L209–212 (1988).

    Article  Google Scholar 

  14. K. Takahata, Y. Iguchi, D. Tanaka, T. Itoh, and I. Terasaki, Phys. Rev. B61, 12551–12555 (2000).

    Google Scholar 

  15. K. Takahata and I. Terasaki, Jpn. J. Appl. Phys. 41, 763–764 (2002).

    Article  CAS  Google Scholar 

  16. D. Pelloquin, A. Maignan, S. Hébert, C. Martin, M. Hervieu, C. Michel, L. B. Wang and Raveau, Will be published in Chem. Mater

    Google Scholar 

  17. T. Yamamoto, I. Tsukada, K. Uchinokura, M. Takagi, T. Tsubone, M. Ichihara and K. Kobayashi, Jpn. J. Appl. Phys. 39, L747–750 (2000).

    Article  Google Scholar 

  18. T. Fujii, I. Terasaki, T. Watanabe, and A. Matsuda, Jpn. J. Appl. Phys. 41, L783–786 (2002).

    Article  Google Scholar 

  19. R. Currat, cond-mat0203385.

    Google Scholar 

  20. G. A. Slack, CRC Handbook of Thermoelectrics, Chemical Rubber, Boca Raton FL, 1995, Chap. 34, p. 407edited by D. M. Rowe.

    Google Scholar 

  21. J. M. Tarascon, R. Ramesh, P. Barboux, M. S. Hedge, G. W. Hull, L. H. Greene, M. Giroud, Y. LePage, W. R. McKinnon, J. V. Waszczak and L. F. Schneemeyer, Solid State Commun. 71, 663–668 (1989).

    Article  CAS  Google Scholar 

  22. Y. Matsui, A. Maeda, Y. Tanaka and S. Horiuchi, Jpn. J. Appl. Phys. 27, L372–375 (1988).

    Article  Google Scholar 

  23. Y. Matsui, A. Maeda, K. Uchinokura and S. Takekawa, Jpn. J. Appl. Phys. 29, L273–276 (1990).

    Article  Google Scholar 

  24. J. H. P. M. Emmen, S. K. J. Lenczowski, J. H. J. Dalderop and V. A. M. Brabers, J. Crystal Growth 118, 477–482 (1992).

    Article  CAS  Google Scholar 

  25. D. J. Singh, Phys. Rev. B61, 13397–13402 (2000).

    Google Scholar 

  26. P. Link, D. Jaccard and P. Lejay, Physica B255, 207–213 (1996).

    Google Scholar 

  27. T. Itoh, T. kawata, T. Kitajima, and I. Terasaki, 1234, Int. Conf. Thermoelectr. Proc. 17, 595–597 (1998)

    Google Scholar 

  28. T. Fujii, I. Terasaki, T. Watanabe and A. Matsuda: Will be published in Physica C; cond-mat0204187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fujii, T., Terasaki, I. (2003). Block-Layer Concept for the Layered Cobalt Oxide: A Design for Thermoelectric Oxides. In: Kanatzidis, M.G., Mahanti, S.D., Hogan, T.P. (eds) Chemistry, Physics, and Materials Science of Thermoelectric Materials. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9278-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9278-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4872-6

  • Online ISBN: 978-1-4419-9278-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics