Skip to main content

Impact of Increased Penetration of DFIG Wind Generators on System Dynamic Performance

  • Chapter
  • First Online:
Grid Integration and Dynamic Impact of Wind Energy

Part of the book series: Power Electronics and Power Systems ((PEPS))

  • 2878 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lew D, Piwko R, Project Managers. Western wind and solar integration study. Subcontract report NREL/SR-550-47434, Prepared for NREL by GE Energy, May 2010

    Google Scholar 

  2. Vittal V, McCalley JD, Ajjarapu V, Shanbhag U (2009) Impact of increased DFIG wind penetration on power systems and markets. PSERC final report, Aug 2009

    Google Scholar 

  3. Kundur P, Paserba J, Ajjarapu V, Andersson G, Bose A, Canizares C, Hatziargyriou N, Hill D, Stankovic A, Taylor C, Van Cutsem T, Vittal V (2004) Definition and classification of power system stability, IEEE/CIGRE joint task force on stability terms and definitions report. IEEE Trans Power Sys 19(3):1387–1401

    Article  Google Scholar 

  4. Anderson PM, Fouad AA (2003) Power system control and stability, 2nd edn. Wiley Interscience, Piscataway

    Google Scholar 

  5. Sanchez Gasca JJ, Miller NW, Price WW (2004) A modal analysis of a two-area system with significant wind power penetration. Proceedings of the 2004 IEEE PES power systems conference and exposition, pp 1148–1152

    Google Scholar 

  6. Slootweg JG, Kling WL (2003) The impact of large scale wind power generation on power system oscillations. Electr Power Sys Res 67(1):9–20

    Article  Google Scholar 

  7. Fernandez RD, Mantz RJ, Battaiotto PE (2007) Impact of wind farms on power system—an eigenvalue analysis approach. Renew Energy 32(10):1676–1688

    Article  Google Scholar 

  8. Xu F, Zhang XP, Godfrey K, Ju P (2007) Small-signal stability analysis and optimal control of a wind turbine with doubly fed induction generator. Proceedings of the 2007 IET generation, transmission & distribution, pp 751–760

    Google Scholar 

  9. Mendonca A, Lopes JAP (2005) Impact of large scale wind power integration on small-signal stability. Proceedings of the 2005 international conference on future power systems, pp 1–5

    Google Scholar 

  10. Mei F, Pal B (2007) Modal analysis of grid connected doubly fed induction generators. IEEE Trans Energy Convers 22(3):728–736

    Article  Google Scholar 

  11. Faddeev DK, Faddeeva VN (1963) Computational methods of linear algebra. W. H. Freeman and Company, San Francisco and London

    Google Scholar 

  12. Van Ness JE, Boyle JM, Imad FP (1965) Sensitivities of large, multiple—loop control systems. IEEE Trans Autom Control 10(3):308–315

    Google Scholar 

  13. Smed T (1993) Feasible eigenvalue sensitivity for large power systems. IEEE Trans Power Sys 8(2):555–561

    Article  Google Scholar 

  14. Ma J, Dong ZY, Zhang P (2006) Eigenvalue sensitivity analysis for dynamic power system. Proceedings of the 2006 international conference on power system technology, pp 1–7

    Google Scholar 

  15. Gautam D, Vittal V, Harbour T (2009) Impact of increased penetration of DFIG based wind turbine generators on transient and Small-signal stability of power systems. IEEE Trans Power Sys 24(3):1426–1434

    Article  Google Scholar 

  16. Gautam D (2010) Impact of increased penetration of DFIG based wind turbine generator on rotor angle stability of power systems. Ph.D. Dissertation, Arizona State University

    Google Scholar 

  17. Kayikci M, Milanovic JV (2008) Assessing transient response of DFIG—based wind plants—the influence of model simplifications and parameters. IEEE Trans Power Sys 23(2):545–554

    Article  Google Scholar 

  18. Nunes MVA, Lopes JAP, Zurn HH, Bezerra UH, Almeida RG (2004) Influence of the variable-speed wind generators in transient stability margin of the conventional generators integrated in electrical grids. IEEE Trans Energy Convers 19(4):692–701

    Article  Google Scholar 

  19. Muljadi E, Butterfield CP, Parsons B, Ellis A (2008) Effect of variable speed wind turbine generator on stability of a weak grid. IEEE Trans Power Sys 22(1):29–35

    Google Scholar 

  20. Vittal E, O’Malley M, Keane A (2012) Rotor angle stability with high penetrations of wind generation. IEEE Trans Power Sys. 27(1):353–362

    Google Scholar 

  21. Hansen AD, Michalke G (2007) Fault ride-through capability of DFIG wind turbines. Renew Energy 32:1594–1610

    Article  Google Scholar 

  22. Lund T, Sorensen P, Eek J (2007) Reactive power capability of a wind turbine with doubly fed induction generator. Wind Energy 10:379–394

    Article  Google Scholar 

  23. Konopinski RJ, Vijayan P, Ajjarapu V (2009) Extended reactive capability of DFIG wind parks for enhanced system performance. IEEE Trans Power Sys 24(3):1346–1355

    Article  Google Scholar 

  24. Vittal E, O’Malley M, Keane A (2010) A steady-state voltage stability analysis of power systems with high penetrations of wind. IEEE Trans Power Sys 25(1):433–442

    Article  Google Scholar 

  25. Kayikci M, Milanovic JV (2007) Reactive power control strategies for DFIG-based plants. IEEE Trans Energy Convers 22(2):389–396

    Article  Google Scholar 

  26. Tapia G, Tapia A, Ostolazam JX (2007) Proportional-integral regulator-based approach to wind farm reactive power management for secondary voltage control. IEEE Trans Energy Convers 22(2):488–498

    Article  Google Scholar 

  27. Cartwright P, Holdsworth L, Ekanayake JB, Jenkins N (2004) Co-ordinated voltage control strategy for a doubly-fed induction generator (DFIG)-based wind farm. Proc Inst Electr Eng Gen Transm Distrib 151(4):495–502

    Article  Google Scholar 

  28. Cigré Report 328 (2007) Modeling and dynamic behavior of wind generation as it relates to power system control and dynamic performance. Working group C4.601

    Google Scholar 

  29. Kundur P (1993) Power system stability and control. McGraw Hill, Inc, New York

    Google Scholar 

  30. Lalor G, Mullane A, O’Malley M (2005) Frequency control and wind turbine technologies. IEEE Trans Power Sys 20(4):1905–1913

    Article  Google Scholar 

  31. Morren J, Haan SWH, Kling WL, Ferreira JA (2006) Wind turbines emulating inertia and supporting primary frequency control. IEEE Trans Power Sys 21(1):433–434

    Article  Google Scholar 

  32. Ramtharan G, Ekanayake JB, Jenkins N (2007) Frequency support from doubly fed induction generator wind turbines. IET Renew Power Gen 1(1):3–9

    Article  Google Scholar 

  33. Miller N, Clark K, Delmerico R, Cardinal M (2009) WindinertiaTM: inertial response option for GE wind turbine generators. Presented at the 2009 IEEE power engineering society general meeting

    Google Scholar 

  34. Gautam D, Goel L, Ayyanar R, Vittal V, Harbour T (2011) Control strategy to mitigate the impact of reduced inertia due to doubly fed induction generators on large power systems. IEEE Trans Power Sys 26(1):214–224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Vittal .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vittal, V., Ayyanar, R. (2013). Impact of Increased Penetration of DFIG Wind Generators on System Dynamic Performance . In: Grid Integration and Dynamic Impact of Wind Energy. Power Electronics and Power Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9323-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9323-6_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9322-9

  • Online ISBN: 978-1-4419-9323-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics