Skip to main content

Classifier Boosting for Human Activity Recognition

  • Chapter
  • First Online:
Ensemble Machine Learning
  • 13k Accesses

Abstract

The ability to visually infer human activities happening in an environment is becoming increasingly important due to the tremendous practical applications it offers [1]. Systems that can automatically recognize human activities can potentially help us in monitoring people’s health as they age [7], and to fight crime through improved surveillance [26]. They have tremendous medical applications in terms of helping surgeons perform better by identifying and evaluating crucial parts of the surgical procedures, and providing the medical specialists with useful feedback [2]. Similarly, these systems can help us improve our productivity in office environments by detecting various interesting and important events around us to enhance our involvement in important office tasks [21].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.K. Aggarwal and Q. Cai, Human motion analysis: A review, Journal of Computer Vision and Image Understanding 73 (1999), no. 3, 428–440.

    Article  Google Scholar 

  2. S. Ahmadi, T. Sielhorst, R. Stauder, M. Horn, H. Feussner, and N. Navab, Recovery of surgical workflow without explicit models, Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2006, pp. 420–428.

    Google Scholar 

  3. U. Akdemir, P. Turaga, and R. Chellappa, An ontology based approach for activity recognition from video, International Conference on Multimedia, 2008.

    Google Scholar 

  4. H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, Surf: Speeded up robust features, Journal of Computer Vision and Image Understanding 110 (2008), 346–359.

    Article  Google Scholar 

  5. A. Bobick and J. Davis, The representation and recognition of action using temporal templates, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 23 (2001), no. 3, 257–267.

    Article  Google Scholar 

  6. C. Cedras and M. Shah, Motion-based recognition: A survey, Image and Vision Computing 13 (1995), 129–155.

    Article  Google Scholar 

  7. M. Choi, B. Jones, J. Shim, K. Hong, and D. Shah, Enabling clinical decision-making through home monitoring and health information technology, INFORMS Data Mining and Health Informatics Workshop, 2010.

    Google Scholar 

  8. D. Comaniciu and P. Meer, Mean shift: A robust approach toward feature space analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI).

    Google Scholar 

  9. R. Cutler and M. Turk, View-based interpretation of real-time optical flow for gesture recognition, IEEE International Conference on Automatic Face and Gesture Recognition, 1998.

    Google Scholar 

  10. N. Dalal and B. Triggs, Histograms of oriented gradients for human detection, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2005.

    Google Scholar 

  11. F. Dellaert, S. Seitz, C. Thorpe, and S. Thrun, Feature correspondence: A markov chain monte carlo approach, Advances in Neural Information Processing Systems (NIPS), 2001.

    Google Scholar 

  12. P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, Behavior recognition via sparse spatio-temporal features, In Proceedings of Visual Surveillance – PETS., 2005.

    Google Scholar 

  13. L. Evans, Partial differential equations, second ed., American Mathematical Society, 1998.

    Google Scholar 

  14. A. Fathi and G. Mori, Action recognition by learning mid-level motion features, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2008.

    Google Scholar 

  15. W. Forstner and E. Gulch, A fast operator for detection and precise location of distinct points, corners and centres of circular features, Workshop of the International Society for Photogrammetry and Remote Sensing, 1987.

    Google Scholar 

  16. J. Friedman, T. Hastie, and R. Tibshirani, Additive logistic regression: a statistical view of boosting, Annals of Statistics 28 (1998), 337–407.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Friedman, T. Hastie, and R. Tibshirani, Additive logistic regression: a statistical view of boosting, Annals of statistics 28 (2000), 337374.

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri, Actions as space–time shapes, Transactions on Pattern Analysis and Machine Intelligence 29 (2007), no. 12, 2247–2253.

    Article  Google Scholar 

  19. R. Hamid, A. Johnson, S. Batta, A. Bobick, C. Isbell, and G. Coleman, Detection and explanation of anomalous activities: Representing activities as bags of event n-grams, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR).

    Google Scholar 

  20. R. Hamid, S. Maddi, A. Bobick, and I. Essa, Structure from statistics: Unsupervised activity analysis using suffix trees, IEEE International Conference on Computer Vision (ICCV).

    Google Scholar 

  21. R. Hamid, S. Maddi, A. Johnson, A. Bobick, I. Essa, and C. Isbell, Discovery and characterization of activities from event-streams, Conference on Uncertainty in AI (UAI), 2005.

    Google Scholar 

  22. C. Harris and M. Stephens, A combined corner and edge detector, Alvey Vision Conference, 1988.

    Google Scholar 

  23. S. Hongeng and R. Nevatia, Multi-agent event recognition, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR).

    Google Scholar 

  24. B. Horn, Robot vision, Mcgraw-Hill, New York, 1986.

    Google Scholar 

  25. G. Ifrim, G. Bakir, and G. Weikum, Fast logistic regression for text categorization with variable-length n-grams, ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), 2008.

    Google Scholar 

  26. Y. Ivanov and A.F. Bobick, Recognition of multi-agent interaction in video surveillance, IEEE International Conference on Computer Vision (ICCV), 1999, pp. 169–176.

    Google Scholar 

  27. Y. Ivanov and R. Hamid, Weighted ensemble boosting for robust activity recognition in video, International Journal on Computer Vision and Graphics 4 (2007).

    Google Scholar 

  28. H. Jhuang, T. Serre, L. Wolf, and T. Poggio, A biologically inspired system for action recognition, IEEE International Conference on Computer Vision (ICCV), 2007.

    Google Scholar 

  29. G. Johansson, Visual perception of biological motion and a model for its analysis., Journal of Perception and Psychophysics 14 (1973), 201–211.

    Article  Google Scholar 

  30. Y. Ke, R. Sukthankar, and M. Hebert, Efficient visual event detection using volumetric features, IEEE International Conference on Computer Vision (ICCV), 2005, pp. 166–173.

    Google Scholar 

  31. I. Laptev and T. Lindeberg, Space–time interest points, IEEE International Conference on Computer Vision (ICCV), 2003.

    Google Scholar 

  32. C. Liu and P. Yuen, Human action recognition using boosted eigenactions, Image and Vision Computing 28 (2010), 825–835.

    Article  Google Scholar 

  33. R. Mann, A. Jepson, and J. Siskind, The computational perception of scene dynamics, European Conference on Computer Vision (ECCV), 1996.

    Google Scholar 

  34. D. Moore, I. Essa, and M. Hayes, Context management for human activity recognition, In Proceedings of Audio and Vision-based Person Authentication, 1999.

    Google Scholar 

  35. Y. Nejigane, M. Shimosaka, T. Mori, and T. Sato, Online action recognition with wrapped boosting, International Conference on Intelligent Robots and Systems (IROS), 2007.

    Google Scholar 

  36. J. Niebles, H. Wang, and L. Fei-fei, Unsupervised learning of human action categories using spatial-temporal words, British Machine Vision Conference (BMVC), 2006.

    Google Scholar 

  37. S. Nowozin, G. Bakar, and K. Tsuda, Discriminative subsequence mining for action classification, IEEE International Conference on Computer Vision (ICCV), 2007, pp. 757–766.

    Google Scholar 

  38. G. Okeyo, L. Chen, W. Hui, and S. Roy, Ontology-enabled activity learning and model evolution in smart homes, International Conference on Ubiquitous Intelligence and Computing (UbiComp), 2010.

    Google Scholar 

  39. R. Polana and R. Nelson, Low level recognition of human motion, IEEE Workshop on Non-rigid and Articulated Motion, 1994.

    Google Scholar 

  40. P. Sand and S. Teller, Particle video: Long-range motion estimation using point trajectories, International Journal of Computer Vision (IJCV) 80 (2008).

    Google Scholar 

  41. R. E. Schapire, The boosting approach to machine learning: An overview, Springer, New York, 2003.

    MATH  Google Scholar 

  42. C. Schuldt, I. Laptev, and B. Caputo, Recognizing human actions: A local svm approach, International Conference on Pattern Recognition (ICPR), 2004, pp. 32–36.

    Google Scholar 

  43. P. Scovanner, A 3-dimensional sift descriptor and its application to action recognition, International Conference on Multimedia, 2007.

    Google Scholar 

  44. M. Shimosaka, Y. Nejigane, T. Mori, and T. Sato, Fast online action recognition with efficient structured boosting, IEEE International Conference on Multimedia and Expo (ICME), 2009.

    Google Scholar 

  45. J. Siskind, Grounding the lexical semantics of verbs in visual perception using force dynamics and event logic, Journal of Artificial Intelligence Research 15 (2001), 31–90.

    Article  MATH  Google Scholar 

  46. P. Smith, N. D. V. Lobo, and M. Shah, Temporalboost for event recognition, IEEE International Conference on Computer Vision (ICCV), 2005.

    Google Scholar 

  47. A. Torralba, K. Murphy, and W. Freeman, Sharing visual features for multiclass and multiview object detection, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 29 (2007), no. 5, 854–869.

    Article  Google Scholar 

  48. L. Torresani, V. Kolmogorov, and C. Rother, Feature correspondence via graph matching: Models and global optimization, European Conference on Computer Vision (ECCV), 2008.

    Google Scholar 

  49. P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, Machine recognition of human activities: A survey, IEEE Transactions on Circuits and Systems for Video Technology (2008).

    Google Scholar 

  50. S. Ullman, The interpretation of visual motion, MIT Press, Cambridge, MA, 1979.

    Book  Google Scholar 

  51. P. Viola and M. Jones, Robust real-time object recognition, IEEE International Conference on Computer Vision (ICCV), 2001.

    Google Scholar 

  52. P. Viola, M.J. Jones, and D. Snow, Detecting pedestrians using patterns of motion and appearance, IEEE International Conference on Computer Vision (ICCV), 2003.

    Google Scholar 

  53. Q. Wei, X. Zhang, Y. Kong, W. Hu, and H. Ling, Group action recognition using space–time interest points, Proceedings of the 5th International Symposium on Advances in Visual Computing, 2009, pp. 757–766.

    Google Scholar 

  54. T. Zhang, J. Liu, S. Liu, Y. Ouyang, and H.Q. Lu, Boosted exemplar learning for human action recognition, IEEE Transactions on Circuits and Systems for Video Technology 99 (2011), 538–545.

    Google Scholar 

  55. J. Zhu, H. Zou, S. Rosset, and T. Hastie, Multi-class adaboost, Statistics and its Inference 173 (2009), 349–360.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffay Hamid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hamid, R. (2012). Classifier Boosting for Human Activity Recognition. In: Zhang, C., Ma, Y. (eds) Ensemble Machine Learning. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9326-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9326-7_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9325-0

  • Online ISBN: 978-1-4419-9326-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics