Skip to main content

Auditory Training for Cochlear Implant Patients

  • Chapter
  • First Online:
Auditory Prostheses

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 39))

Abstract

The cochlear implant (CI) is a true medical miracle, providing hearing to the deaf. Certainly, those who developed the implant technology deserve credit for the success of the CI, as do the surgeons who implant the device and the audiologists who program the processors. However, the success of the CI would not be possible without the plasticity of the human brain. In this sense, CI patients have been their own “miracle workers,” because they have learned to make sense of the crude electrical signals provided by the implant device. When the CI was first introduced, many thought that the device would provide only limited benefit. Clearly they were wrong, because many CI users are capable of auditory-only speech perception (e.g., telephone conversation), greatly exceeding initial expectations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amitay, S., Hawkey, D. J., & Moore, D. R. (2005). Auditory frequency discrimination learning is affected by stimulus variability. Perception & Psychophysics, 67(4), 691–698.

    Article  Google Scholar 

  • Amitay, S., Irwin, A., & Moore, D. R. (2006). Discrimination learning induced by training with identical stimuli. Nature Neuroscience, 9(11), 1446–1448.

    Article  PubMed  CAS  Google Scholar 

  • Berenstein, C. K., Mens, L. H., Mulder, J. J., & Vanpoucke, F. J. (2008). Current steering and current focusing in cochlear implants: comparison of monopolar, tripolar, and virtual channel electrode configurations. Ear and Hearing, 29(2), 250–260.

    Article  PubMed  Google Scholar 

  • Bierer, J. A. (2007). Threshold and channel interaction in cochlear implant users: evaluation of the tripolar electrode configuration. Journal of the Acoustical Society of America, 121(3), 1642–1653.

    Article  PubMed  Google Scholar 

  • Bierer, J. A., & Middlebrooks, J. C. (2002). Auditory cortical images of cochlear-implant stimuli: dependence on electrode configuration. Journal of Neurophysiology, 87(1), 478–492.

    PubMed  Google Scholar 

  • Busby, P. A., & Clark, G. M. (1999). Gap detection by early-deafened cochlear-implant subjects. Journal of the Acoustical Society of America, 105(3), 1841–1852.

    Article  PubMed  CAS  Google Scholar 

  • Busby, P. A., Roberts, S. A., Tong, Y. C., & Clark, G. M. (1991). Results of speech perception and speech production training for three prelingually deaf patients using a multiple-electrode cochlear implant. British Journal of Audiology, 25(5), 291–302.

    Article  PubMed  CAS  Google Scholar 

  • Cazals, Y., Pelizzone, M., Kasper, A., & Montandon, P. (1991). Indication of a relation between speech perception and temporal resolution for cochlear implantees. Annals of Otology, Rhinology & Laryngology, 100(11), 893–895.

    CAS  Google Scholar 

  • Cazals, Y., Pelizzone, M., Saudan, O., & Boex, C. (1994). Low-pass filtering in amplitude modulation detection associated with vowel and consonant identification in subjects with cochlear implants. Journal of the Acoustical Society of America, 96(4), 2048–2054.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, P. W., & Clark, G. M. (1997). Changes in synthetic and natural vowel perception after specific training for congenitally deafened patients using a multichannel cochlear implant. Ear and Hearing, 18(6), 488–501.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson, G. S., & Nelson, D. A. (2000). Place-pitch sensitivity and its relation to consonant recognition by cochlear implant listeners using the MPEAK and SPEAK speech processing strategies. Journal of the Acoustical Society of America, 107(3), 1645–1658.

    Article  PubMed  CAS  Google Scholar 

  • Donaldson, G. S., Kreft, H. A., & Litvak, L. (2005). Place-pitch discrimination of single- versus dual-electrode stimuli by cochlear implant users (L). Journal of the Acoustical Society of America, 118(2), 623–626.

    Article  PubMed  Google Scholar 

  • Dorman, M. F., & Loizou, P. C. (1997). Changes in speech intelligibility as a function of time and signal processing strategy for an Ineraid patient fitted with continuous interleaved sampling (CIS) processors. Ear and Hearing, 18(2), 147–155.

    Article  PubMed  CAS  Google Scholar 

  • Dowell, R. C., Seligman, P. M., Blamey, P. J., & Clark, G. M. (1987). Speech perception using a two-formant 22-electrode cochlear prosthesis in quiet and in noise. Acta Oto-Laryngologica, 104(5–6), 439–446.

    Article  PubMed  CAS  Google Scholar 

  • Drennan, W. R., & Rubinstein, J. T. (2008). Music perception in cochlear implant users and its relationship with psychophysical capabilities. Journal of Rehabilitation Research & Development, 45(5), 779–789.

    Article  Google Scholar 

  • Eggermont, J. J., & Ponton, C. W. (2003). Auditory-evoked potential studies of cortical maturation in normal hearing and implanted children: correlations with changes in structure and speech perception. Acta Oto-Laryngologica, 123(2), 249–252.

    Article  PubMed  Google Scholar 

  • Firszt, J. B., Koch, D. B., Downing, M., & Litvak, L. (2007). Current steering creates additional pitch percepts in adult cochlear implant recipients. Otology & Neurotology, 28(5), 629–636.

    Article  Google Scholar 

  • Friesen, L. M., Shannon, R. V., Baskent, D., & Wang, X. (2001). Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. Journal of the Acoustical Society of America, 110(2), 1150–1163.

    Article  PubMed  CAS  Google Scholar 

  • Fu, Q. J. (2002). Temporal processing and speech recognition in cochlear implant users. Neuroreport, 13(13), 1635–1639.

    Article  PubMed  Google Scholar 

  • Fu, Q. J., & Galvin, J. J., 3 rd. (2007). Perceptual learning and auditory training in cochlear implant recipients. Trends in Amplification, 11(3), 193–205.

    Article  PubMed  Google Scholar 

  • Fu, Q. J., & Nogaki, G. (2005). Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing. Journal of the Association for Research in Otolaryngology, 6(1), 19–27.

    Article  PubMed  Google Scholar 

  • Fu, Q. J., & Shannon, R. V. (1999). Effects of electrode location and spacing on phoneme recognition with the Nucleus-22 cochlear implant. Ear and Hearing, 20(4), 321–331.

    Article  PubMed  CAS  Google Scholar 

  • Fu, Q. J., Shannon, R. V., & Galvin, J. J., 3 rd. (2002). Perceptual learning following changes in the frequency-to-electrode assignment with the Nucleus-22 cochlear implant. Journal of the Acoustical Society of America, 112(4), 1664–1674.

    Article  PubMed  Google Scholar 

  • Fu, Q. J., Galvin, J. J., 3 rd., Wang, X., & Nogaki, G. (2004). Effects of auditory training on adult cochlear implant patients: a preliminary report. Cochlear Implants International, 5(Suppl. 1), 84–90.

    Article  PubMed  Google Scholar 

  • Fu, Q. J., Galvin, J. J., 3 rd., Wang, X., & Nogaki, G. (2005a). Moderate auditory training can improve speech performance of adult cochlear implant users. Journal of the Acoustical Society of America 6, 106–111.

    Google Scholar 

  • Fu, Q. J., Nogaki, G., & Galvin, J. J., 3 rd. (2005b). Auditory training with spectrally shifted speech: implications for cochlear implant patient auditory rehabilitation. Journal of the Association for Research in Otolaryngology, 6(2), 180–189.

    Article  PubMed  Google Scholar 

  • Galvin, J. J., 3 rd, Fu, Q. J., & Nogaki, G. (2007). Melodic contour identification by cochlear implant listeners. Ear and Hearing, 28(3), 302–319.

    Article  PubMed  Google Scholar 

  • Galvin, J. J., 3 rd, Fu, Q. J., & Oba, S. (2008). Effect of instrument timbre on melodic contour identification by cochlear implant users. Journal of the Acoustical Society of America, 124(4), EL189–195.

    Google Scholar 

  • Galvin, J. J., 3 rd, Fu, Q. J., & Shannon, R. V. (2009). Melodic contour identification and music perception by cochlear implant users. Annals of the New York Academy of Sciences, 1169, 518–533.

    Article  PubMed  Google Scholar 

  • Gfeller, K., Christ, A., Knutson, J. F., Witt, S., Murray, K. T., & Tyler, R. S. (2000). Musical backgrounds, listening habits, and aesthetic enjoyment of adult cochlear implant recipients. Journal of the American Academy of Audiology, 11(7), 390–406.

    PubMed  CAS  Google Scholar 

  • Gfeller, K., Witt, S., Adamek, M., Mehr, M., Rogers, J., Stordahl, J., & Ringgenberg, S. (2002). Effects of training on timbre recognition and appraisal by postlingually deafened cochlear implant recipients. Journal of the American Academy of Audiology, 13(3), 132–145.

    PubMed  Google Scholar 

  • Habib, M., Rey, V., Daffaure, V., Camps, R., Espesser, R., Joly-Pottuz, B., & Démonet, J. (2002). Phonological training in children with dyslexia using temporally modified speech: a three-step pilot investigation. International Journal of Language & Communication Disorders, 37(3), 289–308.

    Article  Google Scholar 

  • Harnsberger, J. D., Svirsky, M. A., Kaiser, A. R., Pisoni, D. B., Wright, R., & Meyer, T. A. (2001). Perceptual “vowel spaces” of cochlear implant users: implications for the study of auditory adaptation to spectral shift. Journal of the Acoustical Society of America, 109(5, Pt. 1), 2135–2145.

    Google Scholar 

  • IEEE Subcommittee (1969). IEEE recommended practice for speech quality measurements. IEEE Transactions on Audio & Electroacoustics, AU-17(3), 225–246.

    Google Scholar 

  • Kelly, A. S., Purdy, S. C., & Thorne, P. R. (2005). Electrophysiological and speech perception measures of auditory processing in experienced adult cochlear implant users. Clinical Neurophysiology, 116(6), 1235–1246.

    Article  PubMed  Google Scholar 

  • Kiefer, J., Muller, J., Pfennigdorff, T., Schon, F., Helms, J., von Ilberg, C., Baumgartner, W., Gstöttner, W., Ehrenberger, K., Arnold, W., Stephan, K., Thumfart, W., & Baur, S. (1996). Speech understanding in quiet and in noise with the CIS speech coding strategy (MED-EL Combi-40) compared to the multipeak and spectral peak strategies (Nucleus). Journal for Oto-Rhino-Laryngology and Its Related Specialties, 58(3), 127–135.

    Article  PubMed  CAS  Google Scholar 

  • Kong, Y. Y., Cruz, R., Jones, J. A., & Zeng, F. G. (2004). Music perception with temporal cues in acoustic and electric hearing. Ear and Hearing, 25(2), 173–185.

    Article  PubMed  Google Scholar 

  • Landsberger, D. M., & Srinivasan, A. G. (2009). Virtual channel discrimination is improved by current focusing in cochlear implant recipients. Hearing Research, 254(1–2), 34–41.

    Article  PubMed  Google Scholar 

  • Li, T., & Fu, Q. J. (2007). Perceptual adaptation to spectrally shifted vowels: training with nonlexical labels. Journal of the Association for Research in Otolaryngology, 8(1), 32–41.

    Article  PubMed  CAS  Google Scholar 

  • Li, T., Galvin, J. J., 3 rd, & Fu, Q. J. (2009). Interactions between unsupervised learning and the degree of spectral mismatch on short-term perceptual adaptation to spectrally shifted speech. Ear and Hearing, 30(2), 238–249.

    Article  PubMed  Google Scholar 

  • Litvak, L., Delgutte, B., & Eddington, D. (2003). Improved neural representation of vowels in electric stimulation using desynchronizing pulse trains. Journal of the Acoustical Society of America, 114(4, Pt. 1), 2099–2111.

    Google Scholar 

  • Loeb, G. E., & Kessler, D. K. (1995). Speech recognition performance over time with the Clarion cochlear prosthesis. Annals of Otology, Rhinology & Laryngology, Supplement 166, 290–292.

    CAS  Google Scholar 

  • Looi, V., & She, J. (2010). Music perception of cochlear implant users: a questionnaire, and its implications for a music training program. International Journal of Audiology, 49(2), 116–128.

    Article  PubMed  Google Scholar 

  • Luo, X., Fu, Q. J., Wei, C. G., & Cao, K. L. (2008). Speech recognition and temporal amplitude modulation processing by Mandarin-speaking cochlear implant users. Ear and Hearing 29(6), 957–970.

    Article  PubMed  Google Scholar 

  • McDermott, H. J., & McKay, C. M. (1997). Musical pitch perception with electrical stimulation of the cochlea. Journal of the Acoustical Society of America, 101(3), 1622–1631.

    Article  PubMed  CAS  Google Scholar 

  • Moore, B. C. (2004). Dead regions in the cochlea: conceptual foundations, diagnosis, and clinical applications. Ear and Hearing, 25(2), 98–116.

    Article  PubMed  Google Scholar 

  • Moore, D. R., Amitay, S., & Hawkey, D. J. (2003). Auditory perceptual learning. Learning & Memory, 10(2), 83–85.

    Article  Google Scholar 

  • Muchnik, C., Taitelbaum, R., Tene, S., & Hildesheimer, M. (1994). Auditory temporal resolution and open speech recognition in cochlear implant recipients. Scandanavian Audiology, 23(2), 105–109.

    Article  CAS  Google Scholar 

  • Nagarajan, S. S., Wang, X., Merzenich, M. M., Schreiner, C. E., Johnston, P., Jenkins, W. M., et al. (1998). Speech modifications algorithms used for training language learning-impaired children. IEEE Transactions on Rehabilitation Engineering, 6(3), 257–268.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, P. B., Jin, S. H., Carney, A. E., & Nelson, D. A. (2003). Understanding speech in modulated interference: cochlear implant users and normal-hearing listeners. Journal of the Acoustical Society of America, 113(2), 961–968.

    Article  PubMed  Google Scholar 

  • Nilsson, M., Soli, S. D., & Sullivan, J. A. (1994). Development of the Hearing in Noise Test for the measurement of speech reception thresholds in quiet and in noise. Journal of the Acoustical Society of America, 95(2), 1085–1099.

    Article  PubMed  CAS  Google Scholar 

  • Nogaki, G., Fu, Q. J., & Galvin, J. J., 3 rd. (2007). Effect of training rate on recognition of spectrally shifted speech. Ear and Hearing, 28(2), 132–140.

    Article  PubMed  Google Scholar 

  • Oba, S. I., Fu, Q. -J., & Galvin, J. J., 3 rd (2011). Digit training in noise can improve cochlear implant users’ speech understanding in noise. Ear and Hearing (in press).

    Google Scholar 

  • Pelizzone, M., Cosendai, G., & Tinembart, J. (1999). Within-patient longitudinal speech reception measures with continuous interleaved sampling processors for Ineraid implanted subjects. Ear and Hearing, 20(3), 228–237.

    Article  PubMed  CAS  Google Scholar 

  • Plomp, R., & Mimpen, A. M. (1979). Speech-reception threshold for sentences as a function of age and noise level. Journal of the Acoustical Society of America, 66(5), 1333–1342.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, S., Faulkner, A., & Wilkinson, L. (1999). Adaptation by normal listeners to upward spectral shifts of speech: implications for cochlear implants. Journal of the Acoustical Society of America, 106(6), 3629–3636.

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein, J. T., Wilson, B. S., Finley, C. C., & Abbas, P. J. (1999). Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hearing Research, 127(1–2), 108–118.

    Article  PubMed  CAS  Google Scholar 

  • Sagi, E., Fu, Q. J., Galvin, J. J., 3 rd, & Svirsky, M. A. (2010). A model of incomplete adaptation to a severely shifted frequency-to-electrode mapping by cochlear implant users. Journal of the Association for Research in Otolaryngology, 11(1), 69–78.

    Article  PubMed  Google Scholar 

  • Shannon, R. V., Galvin, J. J., 3 rd, & Baskent, D. (2002). Holes in hearing. Journal of the Association for Research in Otolaryngology, 3(2), 185–199.

    Article  PubMed  Google Scholar 

  • Shannon, R. V., Fu, Q. J., & Galvin, J., 3 rd. (2004). The number of spectral channels required for speech recognition depends on the difficulty of the listening situation. Acta Oto-Laryngologica Supplement, (552), 50–54.

    Google Scholar 

  • Skinner, M. W., Clark, G. M., Whitford, L. A., Seligman, P. M., Staller, S. J., Shipp, D. B., Shallop, J. K., Everingham, C., Menapace, C. M., Arndt, P.L., et al. (1994). Evaluation of a new spectral peak coding strategy for the Nucleus 22 Channel Cochlear Implant System. American Journal of Otology, 15(Suppl. 2), 15–27.

    PubMed  Google Scholar 

  • Smith, M. W., & Faulkner, A. (2006). Perceptual adaptation by normally hearing listeners to a simulated “hole” in hearing. Journal of the Acoustical Society of America, 120(6), 4019–4030.

    Article  PubMed  Google Scholar 

  • Smith, Z. M., Delgutte, B., & Oxenham, A. J. (2002). Chimaeric sounds reveal dichotomies in auditory perception. Nature, 416(6876), 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Spivak, L. G., & Waltzman, S. B. (1990). Performance of cochlear implant patients as a function of time. Journal of Speech and Hearing Research, 33(3), 511–519.

    PubMed  CAS  Google Scholar 

  • Stacey P. C., & Summerfield, A. Q. (2005). Auditory-perceptual training using a simulation of a cochlear-implant system: a controlled study. Proceedings from the ISCA Workshop on Plasticity in Speech Perception (PSP2005) (pp. 143–146).

    Google Scholar 

  • Stacey P. C., & Summerfield, A. Q. (2007). Effectiveness of computer-based auditory training in improving the perception of noise-vocoded speech. Journal of the Acoustical Society of America, 121 2923–2935.

    Article  PubMed  Google Scholar 

  • Stacey, P. C., & Summerfield, A. Q. (2008). Comparison of word-, sentence-, and phoneme-based training strategies in improving the perception of spectrally distorted speech. Journal of Speech, Language, and Hearing Research, 51(2), 526–538.

    Article  PubMed  Google Scholar 

  • Svirsky, M. A., Silveira, A., Suarez, H., Neuburger, H., Lai, T. T., & Simmons, P. M. (2001). Auditory learning and adaptation after cochlear implantation: a preliminary study of discrimination and labeling of vowel sounds by cochlear implant users. Acta Oto-Laryngologica, 121(2), 262–265.

    Article  PubMed  CAS  Google Scholar 

  • Svirsky, M. A., Silveira, A., Neuburger, H., Teoh, S.W., & Suarez, H. (2004a). Long-term auditory adaptation to a modified peripheral frequency map. Acta Oto-Laryngologica, 124 381–386.

    PubMed  CAS  Google Scholar 

  • Svirsky, M. A., Talavage, T. M., Sinha, S., & Neuburger, H. (2004b, February). Adaptation to a shifted frequency map: gradual is better. Paper presented at the Annual Meeting of the American Academy for the Advancement of Science, Seattle, WA.

    Google Scholar 

  • Tallal, P., Miller, S. L., Bedi, G., Byma, G., Wang, X., Nagarajan, S. S., Schreiner, C., Jenkins, W. M., & Merzenich, M. M. (1996). Language comprehension in language-learning impaired children improved with acoustically modified speech. Science, 271(5245), 81–84.

    Article  PubMed  CAS  Google Scholar 

  • Tyler, R. S., Parkinson, A. J., Woodworth, G. G., Lowder, M. W., & Gantz, B. J. (1997). Performance over time of adult patients using the Ineraid or nucleus cochlear implant. Journal of the Acoustical Society of America, 102(1), 508–522.

    Article  PubMed  CAS  Google Scholar 

  • Waltzman, S. B., Cohen, N. L., & Shapiro, W. H. (1986). Long-term effects of multichannel cochlear implant usage. Laryngoscope, 96(10), 1083–1087.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, B., Finley, C., Zerbi, M., Lawson, D., & van den Honert, C. (1997). Speech processors for auditory prostheses. Seventh Quarterly progress report, Neural Prosthesis Program (NIH project N01-DC-5-2103). Bethesda, MD: National Institutes of Health.

    Google Scholar 

  • Wright, B. A. (2001). Why and how we study human learning on basic auditory tasks. Audiology & Neurotology, 6(4), 207–210.

    Article  CAS  Google Scholar 

  • Wright, B. A., & Fitzgerald, M. B. (2001). Different patterns of human discrimination learning for two interaural cues to sound-source location. Proceedings of the National Academy of Sciences U S A, 98(21), 12307–12312.

    Article  CAS  Google Scholar 

  • Wright, B. A., & Fitzgerald, M. B. (2005). Learning and generalization of five auditory discrimination tasks as assessed by threshold changes. In D. Pressnitzer, A. de Cheveigne, S. McAdams, & L. Collet (Eds.), Auditory signal processing: physiology, psychoacoustics & models (pp. 509–515). New York: Springer.

    Google Scholar 

  • Wright, B. A., & Sabin, A. T. (2007). Perceptual learning: how much daily training is enough? Experimental Brain Research, 180(4), 727–736.

    Article  Google Scholar 

  • Wright, B. A., & Zhang, Y. (2006). A review of learning with normal and altered sound-­localization cues in human adults. International Journal of Audiology, 45(Suppl. 1), S92–98.

    Article  PubMed  Google Scholar 

  • Wright, B. A., & Zhang, Y. (2009). A review of the generalization of auditory learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1515), 301–311.

    Article  Google Scholar 

  • Wu, J. L., Yang, H. M., Lin, Y. H., & Fu, Q. J. (2007). Effects of computer-assisted speech training on Mandarin-speaking hearing-impaired children. Audiology & Neurotology, 12(5), 307–312.

    Article  Google Scholar 

  • Zeng, F. G. (2004). Trends in cochlear implants. Trends in Amplification, 8(1), 1–34.

    Article  PubMed  Google Scholar 

  • Zeng, F. G., Nie, K., Stickney, G. S., Kong, Y. Y., Vongphoe, M., Bhargave, A., Wei, C., & Cao, K. (2005). Speech recognition with amplitude and frequency modulations. Proceedings of the National Academy of Sciences U S A, 102(7), 2293–2298.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all of the research participants who graciously gave their time and support toward these studies. The authors also acknowledge NIH funding support. Finally, the authors would like to thank Bob Shannon for many years of guidance, and more importantly, for many years of friendship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian-Jie Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fu, QJ., Galvin, J.J. (2011). Auditory Training for Cochlear Implant Patients. In: Zeng, FG., Popper, A., Fay, R. (eds) Auditory Prostheses. Springer Handbook of Auditory Research, vol 39. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9434-9_11

Download citation

Publish with us

Policies and ethics