Skip to main content

The Role of Mitochondrial Oxidative Stress and ATP Depletion in the Pathology of Manganese Toxicity

  • Chapter
  • First Online:
Metal Ion in Stroke

Abstract

The mitochondrial electron transport chain (ETC) creates most of the reactive oxygen species (ROS) produced by the average eukaryotic cell. These ROS, primarily superoxide radical, hydrogen peroxide, and hydroxyl radical, can damage the proteins, phospholipids, and nucleic acids of the mitochondria and the entire cell, though they also play important roles in cell signaling. Addition of ions such as Ca2+ or Mn2+ to mitochondria is known to increase ROS production. Excessive manganese (Mn) uptake by the brain, particularly by the globus pallidus and striatum, can cause signs and symptoms somewhat similar to those of Parkinson’s disease (PD); however, unlike PD, manganese toxicity, or manganism, is characterized pathologically by apoptotic cell death in the globus pallidus (GP). Initial effects of excessive brain Mn2+ include inhibition of ATP production and increased generation of mitochondrial ROS. We do not know the exact pathways that lead from these initial insults to the death of GP cells. However, ATP inhibition and increased ROS have been shown to contribute to the activation of apoptotic processes. ROS increase the probability of induction of the mitochondrial permeability transition (MPT), which causes rapid swelling of the mitochondrial matrix, tearing or leakage of the mitochondrial outer membrane, and release of factors from the mitochondrial intermembrane space which activate apoptosis. It is likely that treatments which ameliorate mitochondrial ROS damage will prove beneficial in minimizing the signs and symptoms of Mn toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aisen P, Aasa R, Redfield AG (1969) The chromium, manganese, and cobalt complexes of transferrin. J Biol Chem 244:4628–4633

    PubMed  CAS  Google Scholar 

  • Aschner M, Aschner JL (1990) Manganese transport across the blood brain barrier: relationship to iron homeostasis. Brain Res Bull 24:857–860

    PubMed  CAS  Google Scholar 

  • Aschner JL, Aschner M (2005) Nutritional aspects of manganese homeostasis. Mol Aspects Med 26:353–362

    PubMed  CAS  Google Scholar 

  • Aschner M, Gannon M (1994) Manganese (Mn) transport across the rat blood-brain barrier: saturable and transferrin-independent mechanisms. Brain Res Bull 33:345–349

    PubMed  CAS  Google Scholar 

  • Aschner M, Erikson KM, Herrero Hernandez E, Tjalkens R (2009) Manganese and its role in Parkinson’s disease: from transport to neuropathology. Neuromolecular Med 11:252–266

    PubMed  CAS  Google Scholar 

  • Au C, Benedetto A, Aschner M (2008) Manganese transport in eukaryotes: the role of DMT1. Neurotoxicology 29:569–576

    PubMed  CAS  Google Scholar 

  • Banta RG, Markesbery WR (1977) Elevated manganese levels associated with dementia and extrapyramidal signs. Neurology 27:213–216

    PubMed  CAS  Google Scholar 

  • Becker LB, vanden Hoek TL, Shao ZH, Li CQ, Schumacker PT (1999) Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Physiol 277:H2240–H2246

    PubMed  CAS  Google Scholar 

  • Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP, Budinger GR, Chandel NS (2007) The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol 177:1029–1036

    PubMed  CAS  Google Scholar 

  • Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127–1155

    PubMed  CAS  Google Scholar 

  • Bernardi P, Rasola A (2007) Calcium and cell death: the mitochondrial connection. Subcell Biochem 45:481–506

    PubMed  CAS  Google Scholar 

  • Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37:755–767

    PubMed  CAS  Google Scholar 

  • Brouillet EP, Shinobu L, McGarvey U, Hochberg F, Beal MF (1993) Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp Neurol 120:89–94

    PubMed  CAS  Google Scholar 

  • Burton NC, Guilarte TR (2009) Manganese neurotoxicity: lessons learned from longitudinal studies in nonhuman primates. Environ Health Perspect 117:325–332

    PubMed  CAS  Google Scholar 

  • Cai J, Jones DP (1998) Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem 273:11401–11404

    PubMed  CAS  Google Scholar 

  • Cersosimo MG, Koller WC (2006) The diagnosis of manganese-induced parkinsonism. Neurotoxicology 27:340–346

    PubMed  CAS  Google Scholar 

  • Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem 217:383–393

    PubMed  CAS  Google Scholar 

  • Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275:25130–25138

    PubMed  CAS  Google Scholar 

  • Chen CJ, Liao SL (2002) Oxidative stress involves in astrocytic alterations induced by manganese. Exp Neurol 175:216–225

    PubMed  CAS  Google Scholar 

  • Chen JY, Tsao GC, Zhao Q, Zheng W (2001) Differential cytotoxicity of Mn(II) and Mn(III): special reference to mitochondrial [Fe-S] containing enzymes. Toxicol Appl Pharmacol 175:160–168

    PubMed  CAS  Google Scholar 

  • Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249

    PubMed  CAS  Google Scholar 

  • Crompton M, KĂĽnzi M, Carafoli E (1977) The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Eur J Biochem 79:549–558

    PubMed  CAS  Google Scholar 

  • Crossgrove JS, Yokel RA (2004) Manganese distribution across the blood-brain barrier: III. The divalent metal transporter-1 is not the major mechanism mediating brain manganese uptake. Neurotoxicology 25:451–460

    PubMed  CAS  Google Scholar 

  • Crossgrove JS, Allen DD, Bukaveckas BL, Rhineheimer SS, Yokel RA (2003) Manganese distribution across the blood-brain barrier: I. Evidence for carrier-mediated influx of manganese citrate as well as manganese and manganese transferrin. Neurotoxicology 24:3–13

    PubMed  CAS  Google Scholar 

  • Dawson TL, Gores GJ, Nieminen AL, Herman B, Lemasters JJ (1993) Mitochondria as a source of reactive oxygen species during reductive stress in rat hepatocytes. Am J Physiol 264:C961–C967

    PubMed  CAS  Google Scholar 

  • Dobson AW, Weber S, Dorman DC, Lash LK, Erikson KM, Aschner M (2003) Oxidative stress is induced in the rat brain following repeated inhalation exposure to manganese sulfate. Biol Trace Elem Res 93:113–126

    PubMed  CAS  Google Scholar 

  • Du P, Buerstatte CR, Chan AWK, Minski MJ, Bennett L, Lai JCK (1997) Accumulation of manganese in liver can result in decreases in energy metabolism in mitochondria. In: Proceedings of 1997 Conference of Hazardous Wastes and Materials, pp 1–14

    Google Scholar 

  • Forman HJ, Kennedy J (1976) Dihydroorotate-dependent superoxide production in rat brain and liver. A function of the primary dehydrogenase. Arch Biochem Biophys 173:219–224

    PubMed  CAS  Google Scholar 

  • Fridovich I (2004) Mitochondria: are they the seat of senescence? Aging Cell 3:13–16

    PubMed  CAS  Google Scholar 

  • Galvani P, Fumagalli P, Santagostino A (1995) Vulnerability of mitochondrial complex I in PC12 cells exposed to manganese. Eur J Pharmacol 293:377–383

    PubMed  CAS  Google Scholar 

  • Gao L, Mann GE (2009) Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovasc Res 82:9–20

    PubMed  CAS  Google Scholar 

  • Gavin CE, Gunter KK, Gunter TE (1990) Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity. Biochem J 266:329–334

    PubMed  CAS  Google Scholar 

  • Gavin CE, Gunter KK, Gunter TE (1992) Mn2+ sequestration by mitochondria and inhibition of oxidative phosphorylation. Toxicol Appl Pharmacol 115:1–5

    PubMed  CAS  Google Scholar 

  • Goldstein S, Meyerstein D, Czapski G (1993) The Fenton reagents. Free Radic Biol Med 15:435–445

    PubMed  CAS  Google Scholar 

  • Grivennikova VG, Vinogradov AD (2006) Generation of superoxide by the mitochondrial Complex I. Biochim Biophys Acta 1757:553–561

    PubMed  CAS  Google Scholar 

  • Guilarte TR, Burton NC, Verina T, Prabhu VV, Becker KG, Syversen T, Schneider JS (2008) Increased APLP1 expression and neurodegeneration in the frontal cortex of manganese-exposed non-human primates. J Neurochem 105:1948–1959

    PubMed  CAS  Google Scholar 

  • Gunter KK, Aschner MA, Miller LM, Eliseev R, Salter J, Anderson K, Hammond S, Gunter TE (2005) Determining the oxidation states of manganese in PC12 and nerve growth factor-induced PC12 cells. Free Radic Biol Med 39:164–181

    PubMed  CAS  Google Scholar 

  • Gunter KK, Aschner M, Miller LM, Eliseev R, Salter J, Anderson K, Gunter TE (2006) Determining the oxidation states of manganese in NT2 cells and cultured astrocytes. Neurobiol Aging 27:1816–1826

    PubMed  CAS  Google Scholar 

  • Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786

    PubMed  CAS  Google Scholar 

  • Gunter TE, Puskin JS (1972) Manganous ion as a spin label in studies of mitochondrial uptake of manganese. Biophys J 12:625–635

    PubMed  CAS  Google Scholar 

  • Gunter TE, Puskin JS (1975) The use of electron paramagnetic resonance in studies of free and bound divalent cation: the measurements of membrane potentials in mitochondria. Ann N Y Acad Sci 264:112–123

    PubMed  CAS  Google Scholar 

  • Gunter TE, Puskin JS, Russell PR (1975) Quantitative magnetic resonance studies of manganese uptake by mitochondria. Biophys J 15:319–333

    PubMed  CAS  Google Scholar 

  • Gunter TE, Miller LM, Gavin CE, Eliseev R, Salter J, Buntinas L, Alexandrov A, Hammond S, Gunter KK (2004) Determination of the oxidation states of manganese in brain, liver, and heart mitochondria. J Neurochem 88:266–280

    PubMed  CAS  Google Scholar 

  • Gunter TE, Gavin CE, Gunter KK (2009) The case for mangnese interaction with mitochondria. Neurotoxicology 30:727–729

    PubMed  CAS  Google Scholar 

  • Gunter TE, Gerstner B, Lester T, Wojtovich AP, Malecki J, Swarts SG, Brookes PS, Gavin CE, Gunter KK (2010) An analysis of the effects of Mn2+ on oxidative phosphorylation in liver, brain, and heart mitochondria using state 3 oxidation rate assays. Toxicol Appl Pharmacol 249:65–75

    PubMed  CAS  Google Scholar 

  • Guzy RD, Sharma B, Bell E, Chandel NS, Schumacker PT (2008) Loss of the SdhB, but Not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol 28:718–731

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Woodfield K-Y, Connern CP (1996) Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to adenine nucleotide translocase. J Biol Chem 1351:3346–3354

    Google Scholar 

  • He L, Girijashanker K, Dalton TP, Reed J, Li H, Soleimani M, Nebert DW (2006) ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Mol Pharmacol 70:171–180

    PubMed  CAS  Google Scholar 

  • Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297

    PubMed  CAS  Google Scholar 

  • Hoffman DL, Brookes PS (2009) Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions. J Biol Chem 284:16236–16245

    PubMed  CAS  Google Scholar 

  • Hoffman DL, Salter JD, Brookes PS (2007) Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling. Am J Physiol Heart Circ Physiol 292:H101–H108

    PubMed  CAS  Google Scholar 

  • Hongpaisan J, Winters CA, Andrews SB (2003) Calcium-dependent mitochondrial superoxide modulates nuclear CREB phosphorylation in hippocampal neurons. Mol Cell Neurosci 24:1103–1115

    PubMed  CAS  Google Scholar 

  • Huang CC, Chu NS, Lu CS, Calne DB (1997) Cock gait in manganese intoxication. Mov Disord 12:807–808

    PubMed  CAS  Google Scholar 

  • Hurley LS, Woolley DE, Rosenthal F, Timiras PS (1963) Influence of manganese on susceptibility of rats to convulsions. Am J Physiol 204:493–496

    PubMed  CAS  Google Scholar 

  • Kalia K, Jiang W, Zheng W (2008) Manganese accumulates primarily in nuclei of cultured brain cells. Neurotoxicology 29:466–470

    PubMed  CAS  Google Scholar 

  • Kim KH, Rodriguez AM, Carrico PM, Melendez JA (2001) Potential mechanisms for the inhibition of tumor cell growth by manganese superoxide dismutase. Antioxid Redox Signal 3:361–373

    PubMed  CAS  Google Scholar 

  • Kowaltowski AJ, Vercesi AE (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26:463–471

    PubMed  CAS  Google Scholar 

  • Kowaltowski AJ, Castilho RF, Vercesi AE (1995) Ca2+-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state. Am J Physiol 269:C141–C147

    PubMed  CAS  Google Scholar 

  • Kroemer G (1999) Mitochondrial control of apoptosis: an overview. Biochem Soc Symp 66:1–15

    PubMed  CAS  Google Scholar 

  • Kroemer G, Zamzami N, Susin SA (1997) Mitochondrial control of apoptosis. Immunol Today 18:44–51

    PubMed  CAS  Google Scholar 

  • Latchoumycandane C, Anantharam V, Kitazawa M, Yang Y, Kanthasamy A, Kanthasamy AG (2005) Protein kinase Cd is a key downstream mediator of manganese-induced apoptosis in dopaminergic neuronal cells. J Pharmacol Exp Ther 313:46–55

    PubMed  CAS  Google Scholar 

  • Lee ES, Yin Z, Milatovic D, Jiang H, Aschner M (2009) Estrogen and tamoxifen protect against Mn-induced toxicity in rat cortical primary cultures of neurons and astrocytes. Toxicol Sci 110:156–167

    PubMed  CAS  Google Scholar 

  • Lehninger AL, Nelson DL, Cox MM (1993) Principles of biochemistry. Worth Publishers, New York, pp 669–674

    Google Scholar 

  • Lesnefsky EJ, Chen Q, Slabe TJ, Stoll MS, Minkler PE, Hassan MO, Tandler B, Hoppel CL (2004) Ischemia, rather than reperfusion, inhibits respiration through cytochrome oxidase in the isolated, perfused rabbit heart: role of cardiolipin. Am J Physiol Heart Circ Physiol 287:H258–H267

    PubMed  CAS  Google Scholar 

  • Liu Z, Li H, Soleimani M, Girijashanker K, Reed JM, He L, Dalton TP, Nebert DW (2008) Cd2+ versus Zn2+ uptake by the ZIP8 HCO3-dependent symporter: kinetics, electrogenicity and trafficking. Biochem Biophys Res Commun 365:814–820

    PubMed  CAS  Google Scholar 

  • Lu CS, Huang CC, Chu NS, Calne DB (1994) Levodopa failure in chronic manganism. Neurology 44:1600–1602

    PubMed  CAS  Google Scholar 

  • Lucchini RG, Albini E, Benedetti L, Borghesi S, Coccaglio R, Malara EC, Parrinello G, Garattini S, Resola S, Alessio L (2007) High prevalence of Parkinsonian disorders associated to manganese exposure in the vicinities of ferroalloy industries. Am J Ind Med 50:788–800

    PubMed  CAS  Google Scholar 

  • Malecki EA (2001) Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons. Brain Res Bull 55:225–228

    PubMed  CAS  Google Scholar 

  • Malthankar GV, White BK, Bhushan A, Daniels CK, Rodnick KJ, Lai JC (2004) Differential lowering by manganese treatment of activities of glycolytic and tricarboxylic acid (TCA) cycle enzymes investigated in neuroblastoma and astrocytoma cells is associated with manganese-induced cell death. Neurochem Res 29:709–717

    PubMed  CAS  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    PubMed  CAS  Google Scholar 

  • Newland MC, Ceckler TL, Kordower JH, Weiss B (1989) Visualizing manganese in the primate basal ganglia with magnetic resonance imaging. Exp Neurol 106:251–258

    PubMed  CAS  Google Scholar 

  • Ohgami RS, Campagna DR, Greer EL, Antiochos B, McDonald A, Chen J, Sharp JJ, Fujiwara Y, Barker JE, Fleming MD (2005) Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat Genet 37:1264–1269

    PubMed  CAS  Google Scholar 

  • Ohgami RS, Campagna DR, McDonald A, Fleming MD (2006) The Steap proteins are metalloreductases. Blood 108:1388–1394

    PubMed  CAS  Google Scholar 

  • Pizzinat N, Copin N, Vindis C, Parini A, Cambon C (1999) Reactive oxygen species production by monoamine oxidases in intact cells. Naunyn Schmiedebergs Arch Pharmacol 359:428–431

    PubMed  CAS  Google Scholar 

  • Pomytkin IA, Kolesova OE (2002) Key role of succinate dehydrogenase in insulin-induced inactivation of protein tyrosine phosphatases. Bull Exp Biol Med 133:568–570

    PubMed  CAS  Google Scholar 

  • Prabhakaran K, Ghosh D, Chapman GD, Gunasekar PG (2008) Molecular mechanism of manganese exposure-induced dopaminergic toxicity. Brain Res Bull 76:361–367

    PubMed  CAS  Google Scholar 

  • Puskin JS, Gunter TE, Gunter KK, Russell PR (1976) Evidence for more than one Ca2+ transport mechanism in mitochondria. Biochemistry 15:3834–3842

    PubMed  CAS  Google Scholar 

  • Ramachandran A, Moellering D, Go YM, Shiva S, Levonen AL, Jo H, Patel RP, Parthasarathy S, Darley-Usmar VM (2002) Activation of c-Jun N-terminal kinase and apoptosis in endothelial cells mediated by endogenous generation of hydrogen peroxide. Biol Chem 383:693–701

    PubMed  CAS  Google Scholar 

  • Ramesh GT, Ghosh D, Gunasekar PG (2002) Activation of early signaling transcription factor, NFkB following low-level manganese exposure. Toxicol Lett 136:151–158

    PubMed  CAS  Google Scholar 

  • Ranganathan AC, Nelson KK, Rodriguez AM, Kim KH, Tower GB, Rutter JL, Brinckerhoff CE, Huang TT, Epstein CJ, Jeffrey JJ et al (2001) Manganese superoxide dismutase signals matrix metalloproteinase expression via H2O2-dependent ERK1/2 activation. J Biol Chem 276:14264–14270

    PubMed  CAS  Google Scholar 

  • Richardson DS, Ponka P (1997) The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim Biophys Acta 1331:1–40

    PubMed  CAS  Google Scholar 

  • Roth JA, Feng L, Walowitz J, Browne RW (2000) Manganese-induced rat pheochromocytoma (PC12) cell death is independent of caspase activation. J Neurosci Res 61:162–171

    PubMed  CAS  Google Scholar 

  • Roth JA, Horbinski C, Higgins D, Lein P, Garrick MD (2002) Mechanisms of manganese-induced rat pheochromocytoma (PC12) cell death and cell differentiation. Neurotoxicology 23:147–157

    PubMed  CAS  Google Scholar 

  • Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186

    PubMed  CAS  Google Scholar 

  • Sheftel AD, Zhang A-S, Brown C, Shirihai OS, Ponka P (2007) Direct interorganellar transfer of iron from endosome to mitochondrion. Blood 110:125–132

    PubMed  CAS  Google Scholar 

  • Singh J, Husain R, Tandon SK, Seth PK, Chandra SV (1974) Biochemical and histopathological alterations in early manganese toxicity in rats. Environ Physiol Biochem 4:16–23

    PubMed  CAS  Google Scholar 

  • Skulachev VP (2006) Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis 11:473–485

    PubMed  CAS  Google Scholar 

  • Smith RA, Murphy MP (2010) Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci 1201:96–103

    PubMed  CAS  Google Scholar 

  • Smith RA, Adlam VJ, Blaikie FH, Manas AR, Porteous CM, James AM, Ross MF, Logan A, Cocheme HM, Trnka J et al (2008) Mitochondria-targeted antioxidants in the treatment of disease. Ann N Y Acad Sci 1147:105–111

    PubMed  CAS  Google Scholar 

  • St.-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondiral electron transport chain. J Biol Chem 277:44784–44790

    PubMed  CAS  Google Scholar 

  • Starkov AA, Fiskum G (2003) Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem 86:1101–1107

    PubMed  CAS  Google Scholar 

  • Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF (2004) Mitochondrial α-ketoglutarate dehydrogenase dehydrogenase complex generates reactive oxygen species. J Neurosci 24:7779–7788

    PubMed  CAS  Google Scholar 

  • Susin SA, Zamzami N, Kroemer G (1998) Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta 1366:151–165

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Mouri T, Suzuki Y, Nishiyama K, Fuju N, Yano H (1975) Study of subacute toxicity of manganese dioxide in monkeys. Tokushima J Exp Med 22:5–10

    PubMed  CAS  Google Scholar 

  • Szeto HH (2008a) Development of mitochondria-targeted aromatic-cationic peptides for neurodegenerative diseases. Ann N Y Acad Sci 1147:112–121

    PubMed  CAS  Google Scholar 

  • Szeto HH (2008b) Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. Antioxid Redox Signal 10:601–619

    PubMed  CAS  Google Scholar 

  • Tamm C, Sabri F, Ceccatelli S (2008) Mitochondrial-mediated apoptosis in neural stem cells exposed to manganese. Toxicol Sci 101:310–320

    PubMed  CAS  Google Scholar 

  • Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427

    PubMed  CAS  Google Scholar 

  • vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT (1998) Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem 273:18092–18098

    PubMed  CAS  Google Scholar 

  • Wasserman GA, Liu X, Parvez F, Ahsan H, Levy D, Factor-Litvak P, Kline J, van Geen A, Slavkovich V, LoIacono NJ et al (2006) Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 114:124–129

    PubMed  CAS  Google Scholar 

  • Wise K, Manna S, Barr J, Gunasekar P, Ramesh G (2004) Activation of activator protein-1 DNA binding activity due to low level manganese exposure in pheochromocytoma cells. Toxicol Lett 147:237–244

    PubMed  CAS  Google Scholar 

  • Wolters EC, Huang C-C, Clark C, Peppard RF, Okada J, Chu N-S, Adam MJ, Ruth TJ, Li D, Calne DB (1989) Positron emission tomography in manganese intoxication. Ann Neurol 26:647–651

    PubMed  CAS  Google Scholar 

  • Zamzami N, Susin SA, Marchetti P, Hirsch T, Gomez-Monterrey I, Castedo M, Kroemer G (1996) Mitochondrial control of nuclear apoptosis. J Exp Med 183:1533–1544

    PubMed  CAS  Google Scholar 

  • Zhang S, Zhou Z, Fu J (2003) Effect of manganese chloride exposure on liver and brain mitochondria function in rats. Environ Res 93:149–157

    PubMed  CAS  Google Scholar 

  • Zheng W, Ren S, Graziano JH (1998) Manganese inhibits mitochondrial aconitase: a mechanism of manganese neurotoxicity. Brain Res 799:334–342

    PubMed  CAS  Google Scholar 

  • Zwingmann C, Leibfritz D, Hazell AS (2003) Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis. J Cereb Blood Flow Metab 23:756–771

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. David Hoffman, Dr. Paul Brookes, and Dr. Roman Eliseev for valuable discussions and Dr. Michael Aschner and Mr. Brent Gerstner for reading and commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Gunter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gunter, T.E., Gavin, C.E., Gunter, K.K. (2012). The Role of Mitochondrial Oxidative Stress and ATP Depletion in the Pathology of Manganese Toxicity. In: Li, Y., Zhang, J. (eds) Metal Ion in Stroke. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9663-3_29

Download citation

Publish with us

Policies and ethics