Skip to main content

An Integrated SHM Approach for Offshore Wind Energy Plants

  • Conference paper
  • First Online:
Structural Dynamics, Volume 3

Abstract

Global warming, the limitation of combustible resources and lack of public acceptance of nuclear power plants including the problem to find appropriate nuclear waste deposits, has pushed renewable sources of energy towards the top of the power generation agenda. This has helped to promote wind power as one of the most cost effective of the renewable technologies. Since the energy gain from off-shore power plants (OWEP) is higher as onshore, many offshore wind parks worldwide are projected. The other side of the medal is that the costs for inspections and maintenance offshore are much higher than for onshore plants. Especially under harsh condition on the sea, classical inspection methods are not practicable. For this reason it makes sense to develop monitoring systems in order to reduce the number of inspections, to identify damage in an early phase and to forecast the remaining life-time of OWEPs. The first part of the paper gives a short overview on the importance of SHM systems for OWEPs. In the second part some suitable methods for monitoring different parts of OWEPs are mentioned. Finally, methods for online force identification sensor fault identification and damage detection/localization accompanied on field tests of a 5 MW plant will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delft University Wind Energy Research Institute (Duwind), 2001, “Concerted Action on Offshore Wind Energy in Europe”, Report Ref.: Duwind 2001.006.

    Google Scholar 

  2. Offshore Design Engineering (ODE), 2007, “Study of the costs of offshore wind generation”, A Report to the Renewables Advisory Board (RAB) & DTI, URN NUMBER 07/779.

    Google Scholar 

  3. Fritzen C-P, Kraemer P, Klinkov M., 2008 “Structural Health Monitoring of Offshore Wind Energy Plants”, 4 th European Workshop on Structural Health Monitoring, Cracow, Poland: 3-21.

    Google Scholar 

  4. Gasch R., Twele J., 2002, „Wind Power Plants – Fundamentals, Design, Construction and Operation“, James & James.

    Google Scholar 

  5. McGugan M., Sorensen B. F., 2007, “Fundamentals for Remote Condition Monitoring of Offshore Wind Turbine Blades”, Proc. 6nd Intl. Workshop on SHM, Stanford: 1913-1919.

    Google Scholar 

  6. Lehmann M., Büter A., Frankenstein B., Schubert F., Brunner B., 2006, “Monitoring System for Delamination Detection-Qualification of Structural Health Monitoring (SHM) Systems”, Conference on Damage in Composite Material CDCM 2006, Stuttgart.

    Google Scholar 

  7. Volkmer P., Kühl A., Müller F., Scholbach D., Volkmer D., 2006, “Continuous Natural Frequency monitoring of Rotor Blades for Detection of Damages, Ice-foundation and Dynamik Overloads”, Deutsche Windenergiekongress, Bremen, Germany.

    Google Scholar 

  8. Pitchford W, 2007, “Impedance-Based Structural Health Monitoring of Wind Turbine Blades”, Master Thesis Virginia Polytechnic Institute and State University.

    Google Scholar 

  9. Ghoshal A., Sundaresan M. J., Schulz M. J., Pai P. F., 2000, “Structural health monitoring techniques for wind turbine blades”, J. of Wind Eng. and Industrial Aerodynamics, 85: 309-324.

    Article  Google Scholar 

  10. Guemes J. A. et. al., 1998, ” Strain and damage monitoring of wind turbine blades by piezoelectrics and fiber optic sensors”, Proc. of the ECCM-8, 3,: 357–64.

    Google Scholar 

  11. Ciang C.C., Lee J.-R., Bang H.-J., 2008, “Structural health monitoring for a wind turbine system: a review of damage detection methods”, J. of Measurement Science and Technology,19: doi:10.1088/0957- 0233/19/12/122001.

  12. Rolfes R, S. Zerbst, G. Haake, J. Reetz and P. Lynch, 2007, “Integral SHM-System for Offshore Wind Turbines using Smart Wireless Sensors” 6th Intl. Workshop on SHM, Stanford: 1889-1896.

    Google Scholar 

  13. Nichols, J. M., 2003, “Structural health monitoring of offshore structures using ambient excitation”, Applied Ocean Research, 25: 101-114.

    Article  Google Scholar 

  14. Kraemer P., Fritzen C.-P., 2007, “Concept for Structural Health Monitoring of Offshore Wind Energy Plants”, Proc. 6nd Intl. Workshop on SHM, Stanford: 1881-1888.

    Google Scholar 

  15. Moll J., Kraemer P., Fritzen C.-P., 2008, “Compensation of Environmental Influences for Damage Detection using Classification Techniques”, 4th European Workshop on Structural Health Monitoring, Cracow: 1080-1087.

    Google Scholar 

  16. Kraemer P., Fritzen C.-P., 2008, “Damage Identification of Structural Components of Offshore Wind Energy Plants”, Deutsche Windenergie Konferenz, DEWEK 2008 Bremen, Germany.

    Google Scholar 

  17. Liersch J., Gasch R., 1996, “Calculation of Fatique Loads by Digital Simulation of Wind Turbines which are controlled by Commercial Controllers in Real Time”, Proc. EUWEC'96, Gothenburg.

    Google Scholar 

  18. Rettenmeier A., M. Kühn, T. Kramkowski, F. Koch, 2006, “Load and Power Performance Measurements of the Multibrid M5000 Prototype”, DEWEK, Bremen, Germany.

    Google Scholar 

  19. Reuter A., N. Cosack, 2004, “On-line load tracking using standard turbine visualisation data”, EWEC, London.

    Google Scholar 

  20. Fischer T., Kühn M., 2006, “Control Requirements for Load Mitigation of Aerodynamic and Hydrodynamic Loads of Offshore Wind Turbines”, DEWEK, Bremen, Germany.

    Google Scholar 

  21. Söker H., C. Illig, N. Cosack, J. Kröning, M. Damaschke, 2006, “A Guide to Design Load Validation”, DEWEK, Bremen, Germany.

    Google Scholar 

  22. Argyriadis K., Gill L., Schwartz S.,” Wave Load Prediction Methods in Offshore Wind Turbine Modelling and their Influence on Fatigue Load Analysis”, available on: http://www.gl-group.com.

  23. Kohlmeier M., Mittendorf K.., Kossel T., Habbar A., Zielke W., 2007, “Wave Load Prediction Methods in Offshore Wind Turbine Modelling and their Influence on Fatigue Load Analysis”, European Offshore Wind Conference & Exhibition, Berlin.

    Google Scholar 

  24. Fritzen C.-P., Klinkov M., 2007, “Online Wind Load Estimation for Offshore Wind Energy Plants”, Proc. 6 th International Workshop on SHM, Stanford: 1905-1912.

    Google Scholar 

  25. Rohrmann R., Rücker W., Said S., 2005, “IMO-WIND An integrated monitoring system for offshore wind energy turbines”, 6th Intl. Conf. on Structural Dynamics (on CD-ROM), Paris.

    Google Scholar 

  26. Rohrmann R. G., Rücker W., Thöns S., 2007, “Integrated monitoring Systems for Offshore Wind Turbines”, Proc. 6nd Intl. Workshop on SHM, Stanford: 1897-1904.

    Google Scholar 

  27. Sohn H., 2007, “Effects of environmental and operational variability on structural health monitoring”, Phil. Trans. R. Soc. A, 365: 539-560.

    Article  Google Scholar 

  28. Oppenheim, A.V., R.W. Schafer, 1998, “Discrete-Time Signal Processing”, 2nd ed., Prentice-Hall.

    Google Scholar 

  29. Kolerus J., 2000, „Zustandsüberwachung von Maschinen“, 3. Auflage, Expert-Verlag.

    Google Scholar 

  30. Antoni J., Randall R.B., 2004, “The Spectral Kurtosis: a useful tool for characterising nonstationary signals”, Mechanical Systems and Signal Processing, Vol. 20: 286-307.

    Google Scholar 

  31. Antoni, J., 2007, “Cyclic spectral analysis of rolling-element bearing signals: Facts and fictions”, Journal of Sound and Vibration, Vol. 304: 497-529.

    Google Scholar 

  32. Sohn, H., K. Worden and C. R. Farrar, 2002, “Statistical Damage Classification Under Changing Environmental and Operational Conditions,” Journal of Intelligent Material Systems and Structures, 13: 561-574.

    Article  Google Scholar 

  33. Kullaa, J., 2005, “Damage Detection under a Varying Environment using the Missing Data Concept”, Proc. 5 th International Workshop on SHM: 565-573.

    Google Scholar 

  34. Kullaa, J., 2002, “Elimination of Environmental Influences from Damage-Sensitive Features in a Structural Health Monitoring System”, Proc. of 1st European Workshop on SHM, Paris: 742–749.

    Google Scholar 

  35. Lämsa V., Kullaa J., 2007,“Nonlinear Factor Analysis in Structural Health Monitoring to Remove Environmental Effects“, Proc. 6nd Intl. Workshop on SHM, Stanford: 1092-1099.

    Google Scholar 

  36. Yan, A.-M., G. Kerschen, P. De Boe and J.-C. Golinval, 2005, “Structural damage diagnosis under varying environmental conditions - part 2”, Mechanical Systems and Processing, 19: 865-880.

    Article  Google Scholar 

  37. Basseville M., M. Abdelghani and A. Benveniste, 2000, “Subspace-based fault detection algorithms for vibration monitoring”, Automatica, 36, 2000: 101-109.

    Article  MathSciNet  MATH  Google Scholar 

  38. Neumaier A. and T. Schneider, 2001, “Estimation of Parameters and Eigenmodes of Multivariate Autoregressive Models”, ACM Transactions on Mathematical Software, 27 (1): 27-57.

    Article  MATH  Google Scholar 

  39. Nabney I. T., 2002, “NETLAB-Algoritms for Patterrn Recognition”,Springer.

    Google Scholar 

  40. Dunia, R., S. J. Qin, T. F. Edgar and T. J. McAvoy, 1996, “Identification of faulty sensors using principal component analysis”, AiChe Journal, 42 (10): 2797-2812.

    Article  Google Scholar 

  41. Kerschen G., P. De Boe, J.-C. Golinval and K. Worden, 2004 “Sensor validation for on-line vibration monitoring”, Proc. 2nd Europ. Workshop on SHM, Munich, Germany: 819-827.

    Google Scholar 

  42. Mattern D. L., L. C. Jaw, T.-H. Guo, R. Graham and W. McCoy, 1998, “Using Neural Network for Sensor Validation”, 34th Joint Propulsion Conference, Cleveland, Ohio, USA.

    Google Scholar 

  43. Worden K., 2003, “Sensor validation and correction using auto-associative neural networks and principal component analysis”, Proc. IMAC XXI, Orlando, USA.

    Google Scholar 

  44. Kullaa J., 2007, “Sensor Fault Identification and Correction in Vibration-Based Multichannel Structural Health Monitoring”, Proc. 6nd Intl. Workshop on SHM, Stanford: 606-613.

    Google Scholar 

  45. Kraemer P., Fritzen C.-P., 2007, “Sensor Fault Identification Using Autoregressive Models and the Mutual Information Concept”, DAMAS 2007, Torino, Key Engineering Materials, 347: 387-392.

    Article  Google Scholar 

  46. Kraemer P., Fritzen C.-P., 2008, “Sensor Fault Detection and Signal Reconstruction using Mutual Information and Kalman Filters”, International Conference on Noise and Vibration Engineering, Leuven, Belgium: 3267-3282.

    Google Scholar 

  47. Fritzen C.-P., Bohle K.,, 2001, “Model-Based Damage Identification from Change of Modal Data – A Comparison of Different Methods”, Proc. 2nd Intl. Workshop on SHM, Standford: 849-859.

    Google Scholar 

  48. Balageas D., C.-P. Fritzen and A. Güemes, 2006, “Structural Health Monitoring”, ISTE Ltd, London, 2006.

    Book  Google Scholar 

  49. Uhl T., 2007, “The inverse identification problem and its technical applications”, Archive of Applied Mechanics, 77: 325-337.

    Article  MATH  Google Scholar 

  50. Jacquelin E., Bennani A., Hamelin P., 2003, “Force reconstruction: analysis and regularization of a deconvolution problem”, Journal of Sound and Vibration, 265: 81-107.

    Article  Google Scholar 

  51. Inoue H., Harrigan J.J., Reid S.R., 2001, “Review of inverse analysis for indirect measurement of impact force”, Appl. Mech. Rev. 54(6), November (2001): 503-524.

    Google Scholar 

  52. Elliott K., Buehrle R., James G., 2005, “Space shuttle transportation loads diagnostics”, Proceedings of the 23 rd International Modal Analysis Conference, Orlando, Florida.

    Google Scholar 

  53. Lee M.L., Chiu W.K., Koss L.L., 2005, “A numerical Study into the reconstruction of impact force on railway tracklike structures”, Sage Publications, 4(1): 19-45.

    Google Scholar 

  54. Stevens K., 1987, “Force identification problems - an overview, Proceedings of SEM”, Spring Meeting, Houston:. 838-844.

    Google Scholar 

  55. Trujillo D. M., Busby H. R., 1997, “Practical inverse engineering”, CRC Press, London.

    MATH  Google Scholar 

  56. Adams R., Doyle J.F., 2002, “Multiple force identification for complex structures”, Experimental Mechanics, 42(1): 25-36.

    Article  Google Scholar 

  57. Doyle J.F.. 1984, “An experimental method for determining the dynamic contact law”, Experimental Mechanics, 24(4): 265-270.

    Article  MathSciNet  Google Scholar 

  58. Nordström L. J. L., 2005, “Input estimation in structural dynamics”, PhD thesis, Chalmers University of Technology Sweden, Göteborg, Sweden.

    Google Scholar 

  59. Genaro G. G., Rade D. A., 1998, “Input force identification in time domain”, Proceedings of the 16th International Modal Analysis Conference: 124-129.

    Google Scholar 

  60. Kammer D. C., Steltzner A. D., 2001, “Structural identification of Mir using inverse system dynamics and Mir/Shuttle docking data”, Journal of Vibration and Acoustics 123(2): 230-237.

    Article  Google Scholar 

  61. Söfker D., Ahrens J., Ulbrich H., Krajcin I., 2003, „Modellgestützte Schätzung von Kontakt-Kräften und Verschiebungen an rotierenden Wellen“, Schwingungen in rotierenden Maschinen V. Verlag Vieweg.

    Google Scholar 

  62. Ha Q. P., Nguyen A. D., Trinh H., 2004, “Simultaneous state and input estimation with application to a two-link robotic system”, Proc. ASCC of the 5th Asian Control Conference: 322-328.

    Google Scholar 

  63. Klinkov M., Fritzen C.-P., 2006, ”Online estimation of external loads from dynamic measurements”, Intl. Conf. on Noise and Vibration Engineering, ISMA, Leuven, Belgium, on CD.

    Google Scholar 

  64. Rencher A.C., 2002, “Methods of Multivariate Analysis”, John Wiley & Sons, Inc.

    Book  MATH  Google Scholar 

  65. Worden K., Farrar C.R., Manson G. and Park G., 2005, “Fundamental Axioms of Structural health Monitoring”, In: Proc 4th International Workshop Structural Health Monitoring, Stanford University: 26-41.

    Google Scholar 

  66. Areva-Multibrid MTd., 2008, http://wwwmultibridcom/indexphp?id=9&L=1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus-Peter Fritzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Businees Media, LLC

About this paper

Cite this paper

Fritzen, CP., Kraemer, P., Klinkov, M. (2011). An Integrated SHM Approach for Offshore Wind Energy Plants. In: Proulx, T. (eds) Structural Dynamics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9834-7_63

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9834-7_63

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9833-0

  • Online ISBN: 978-1-4419-9834-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics