Skip to main content

Local Oxidation Using Dynamic Force Mode: Toward Higher Reliability and Efficiency

  • Chapter
  • First Online:
Tip-Based Nanofabrication

Abstract

Local oxidation by scanning probe microscopy (SPM) is used extensively for patterning nanostructures on metallic, insulating, and semiconducting thin films and substrates. Numerous possibilities for refining the process by controlling charge density within the oxide and shaping the water meniscus formed at the junction of the probe tip and substrate have been explored by a large number of researchers under both contact mode (CM) and dynamic-force mode (DFM) conditions. This article addresses the question of whether or not the oxide growth rate and feature size obtainable by each method arise from distinctly different kinetic processes or arise simply because charge buildup and dissipation evolve over different time scales for these two cases. We report simultaneous oxide-volume and current-flow measurements for exposures performed by CM and DFM and then go on to discuss the practical realization of enhanced reliability and energy efficiency made possible by a better understanding of the relation between oxidation time and ionic diffusion using DFM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek and J. Bennett, Appl. Phys. Lett. 56, 2001 (1990).

    Article  Google Scholar 

  2. A. A. Tseng, A. Notargiacomo and T. P. Chen, JVST B 23, 877 (2005).

    Google Scholar 

  3. D. Stievenard and B. Legrand, Prog. Surf. Sci. 81, 112 (2006).

    Article  Google Scholar 

  4. J. A. Dagata, in Scanning Probe Microscopy: Electrical and electromechanical phenomena at the nanoscale, edited S. Kalinin and A. Gruverman, Springer Press, New York (2007), Vol. II, p. 858.

    Google Scholar 

  5. A. Orians, C. B. Clemons, D. Golovaty and G. W. Young, Surf. Sci. 600, 3297 (2006).

    Article  Google Scholar 

  6. S. Djurkovic, C. B. Clemons, D. Golovaty and G. W. Young, Surf. Sci. 601, 5340 (2007).

    Article  Google Scholar 

  7. A. Plonka, Prog. React. Kinet. 16, 157 (1991).

    Google Scholar 

  8. R. Meltzer and J. Klafter, Phys. Rep. 339 1 (2000) and references therein.

    Article  Google Scholar 

  9. R. A. Alberty and W. G. Miller, J. Chem. Phys. 26, 1231 (1957).

    Article  Google Scholar 

  10. J. A. Dagata, F. Perez-Murano, G. Abadal, K. Morimoto, T. Inoue, J. Itoh, K. Matsumoto and H. Yokoyama, Appl. Phys. Lett. 76, 2710 (2000).

    Article  Google Scholar 

  11. H. H. Uhlig, Acta Metall. 4, 541 (1956).

    Article  Google Scholar 

  12. F. P. Fehlner and N. F. Mott, Oxid. Met. 2, 59 (1970).

    Article  Google Scholar 

  13. D. R. Wolters and A. T. A. Zegers-van Duynhoven, J. Appl. Phys. 65, 5126 (1989).

    Article  Google Scholar 

  14. E. Dubois and J-L. Bubendorff, J. Appl. Phys. 87, 8148 (2000).

    Article  Google Scholar 

  15. J. A. Dagata, T. Inoue, J. Itoh and H. Yokoyama, Appl. Phys. Lett. 73, 271 (1998).

    Article  Google Scholar 

  16. J. A. Dagata, T. Inoue, J. Itoh, K. Matsumoto and H. Yokoyama, J. Appl. Phys. 84, 6891 (1998).

    Article  Google Scholar 

  17. F. Perez-Murano, K. Birkelund, K. Morimoto and J. A. Dagata, Appl. Phys. Lett. 75, 199 (1999).

    Article  Google Scholar 

  18. K. Morimoto, F. Perez-Murano, and J. A. Dagata, Appl. Surf. Sci. 158, 205 (2000).

    Article  Google Scholar 

  19. C. R. Kinser, M. J. Schmitz, and M. C. Hersam, Adv. Mater. 18, 1377 (2006).

    Article  Google Scholar 

  20. F. Perez-Murano, G. Abadal, N. Barniol, X. Aymerich, J. Servat, P. Gorostiza and F. Sanz, J. Appl. Phys. 78, 6797 (1995).

    Article  Google Scholar 

  21. R. Garcia, M. Calleja and F. Perez-Murano, Appl. Phys. Lett. 72, 2295 (1998).

    Article  Google Scholar 

  22. M. Calleja, J. Anguita, R. Garcia, K. Birkelund, F. Perez-Murano and J. A. Dagata, Nanotechnology 10, 34 (1999).

    Article  Google Scholar 

  23. R. Garcia, M. Calleja and H. Rohrer, J. Appl. Phys. 86, 1898 (1999).

    Article  Google Scholar 

  24. M. Calleja and R. Garcia, Appl. Phys. Lett. 76, 3427 (2000). We thank RG for providing the data in Figure 4 in numerical form.

    Article  Google Scholar 

  25. M. Tello and R. Garcia, Appl. Phys. Lett. 79, 424 (2001).

    Article  Google Scholar 

  26. J. A. Dagata, F. Perez-Murano, C. Martin, H. Kuramochi and H. Yokoyama, J. Appl. Phys. 96, 2386 (2004).

    Article  Google Scholar 

  27. J. A. Dagata, F. Perez-Murano, C. Martin, H. Kuramochi and H. Yokoyama, J. Appl. Phys. 96, 2393 (2004).

    Article  Google Scholar 

  28. F. Perez-Murano, C. Martin, N. Barniol, H. Kuramochi, H. Yokoyama and J. A. Dagata, Appl. Phys. Lett. 82, 3086 (2003).

    Article  Google Scholar 

  29. A. Garcia-Martin and R. Garcia, Appl. Phys. Lett. 88, 123115 (2006).

    Article  Google Scholar 

  30. D. Wang, L. Tsau and K. L. Wang, Appl. Phys. Lett. 65, 1415 (1994).

    Article  Google Scholar 

  31. B. Legrand and D. Stievenard, Appl. Phys. Lett. 76, 1018 (2000).

    Article  Google Scholar 

  32. B. Legrand and D. Stievenard, Appl. Phys. Lett. 74, 4049 (1999).

    Article  Google Scholar 

  33. N. Clement, D. Tonneau, B. Gely, H. Dallaporta, V. Safarov, and J. Gautier, JVST B 21, 2348 (2003).

    Google Scholar 

  34. J. A. Vicary and M. J. Miles, Ultramicroscopy 108, 1120 (2008).

    Article  Google Scholar 

  35. E. S. Snow and P. M. Campbell, Appl. Phys. Lett. 64, 1932 (1994).

    Article  Google Scholar 

  36. E. S. Snow, P. M. Campbell, and F. K. Perkins, Appl. Phys. Lett. 75, 1476 (1999).

    Article  Google Scholar 

  37. E. S. Snow, G. G. Jernigan, and P. M. Campbell, Appl. Phys. Lett. 76, 1782 (2000).

    Article  Google Scholar 

  38. D. Graf, M. Frommenwiler, P. Studerus, T. Ihn, K. Ensslin, D. C. Driscoll and A. C. Gossard, J. Appl. Phys. 99, 053707 (2006).

    Article  Google Scholar 

  39. H. Kuramochi, K. Ando, T. Tokizaki and H. Yokoyama, Appl. Phys. Lett. 88, 093109 (2006).

    Article  Google Scholar 

  40. P. A. Fontaine, E. Dunois and D. Stievenard, J. Appl. Phys. 84, 1776 (1998).

    Article  Google Scholar 

  41. H. Kuramochi, K. Ando, T. Tokizaki and H. Yokoyama, Jpn. J. Appl. Phys. 45, 2018 (2006).

    Article  Google Scholar 

  42. H. Kuramochi, F. Perez-Murano, J. A. Dagata and H. Yokoyama, Nanotechnology 15, 297 (2004).

    Article  Google Scholar 

  43. H. Kuramochi, T. Tokizaki, H. Yokoyama and J. A. Dagata, Nanotechnology 18, 135703 (2007).

    Article  Google Scholar 

  44. H. Kuramochi, K. Ando and H. Yokoyama, Surf. Sci. 542, 56 (2003).

    Article  Google Scholar 

  45. H. Kuramochi, K. Ando, T. Tokizaki and H. Yokoyama, Appl. Phys. Lett. 84, 4005 (2004).

    Article  Google Scholar 

  46. A. Yokoo, JVST B 21, 2966 (2003).

    Google Scholar 

  47. M. Cavallini, P. Mei, F. Biscarini and R. Garcia, Appl. Phys. Lett. 83, 5286

    Google Scholar 

  48. D. Wouters and U. S. Schubert, Nanotechnology 18, 485306 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Kuramochi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kuramochi, H., Dagata, J.A. (2011). Local Oxidation Using Dynamic Force Mode: Toward Higher Reliability and Efficiency. In: Tseng, A. (eds) Tip-Based Nanofabrication. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9899-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9899-6_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9898-9

  • Online ISBN: 978-1-4419-9899-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics