Skip to main content

γδ T Cells in Cancer

  • Chapter
  • First Online:
Innate Immune Regulation and Cancer Immunotherapy
  • 1884 Accesses

Abstract

The field of cancer immunology and immune therapy has been an important focus of basic and clinical research since early discoveries of tumor antigens and adoptive immunity (Disis et al. 2009; Dougan and Dranoff 2009a, b). As techniques developed that allowed researchers to distinguish various lymphocyte subsets, more ­specific strategies began to develop, and included such therapies as IL-2 stimulation of autologous lymphokine activated killer (LAK) cells from peripheral blood and ex vivo culture and activation of tumor-infiltrating lymphocytes (TIL). Most of these studies focused on natural killer (NK) cells or cytotoxic T lymphocytes (CTL) as the primary mediators of antitumor immunity (Yannelli et al. 1996; Bloom et al. 1997; Fleischhauer et al. 1997; Kawakami et al. 1998; Kim et al. 1998; Dudley et al. 1999; Mateo et al. 1999; Colella et al. 2000) and although notable successes have been achieved, most CTL- or NK-based immunotherapeutic strategies have ­delivered mixed results. The contribution of γδ T cells, a minor T cell subset with distinct innate immune recognition properties, has not been explored until recently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison JP, Havran WL (1991) The immunobiology of T cells with invariant gamma delta antigen receptors. Annu Rev Immunol 9:679–705

    Article  PubMed  CAS  Google Scholar 

  • Argentati K, Re F et al (2003) Reduced number and impaired function of circulating gamma delta T cells in patients with cutaneous primary melanoma. J Invest Dermatol 120(5):829–834

    Article  PubMed  CAS  Google Scholar 

  • Bauer S, Groh V et al (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA [see comments]. Science 285(5428):727–729

    Article  PubMed  CAS  Google Scholar 

  • Bennouna J, Bompas E et al (2008) Phase-I study of Innacell gammadeltatrade mark, an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 57(11):1599–1609

    Article  PubMed  CAS  Google Scholar 

  • Bennouna J, Levy V et al (2010) Phase-I study of bromohydrin pyrophosphate (BrHPP, IPH 1101), a Vgamma9Vdelta2 T lymphocyte agonist in patients with solid tumors. Cancer Immunol Immunother 59(10):1521–1530. Epub 2010 Jun 19

    Article  PubMed  CAS  Google Scholar 

  • Blazar BR, Taylor PA et al (1996) Murine gamma/delta-expressing T cells affect alloengraftment via the recognition of nonclassical major histocompatibility complex class Ib antigens. Blood 87(10):4463–4472

    PubMed  CAS  Google Scholar 

  • Bloom MB, Perry-Lalley D et al (1997) Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J Exp Med 185(3):453–459

    Article  PubMed  CAS  Google Scholar 

  • Boismenu R, Havran WL (1997) An innate view of gamma delta T cells. Curr Opin Immunol 9:57–63

    Article  PubMed  CAS  Google Scholar 

  • Bonneville M, Scotet E (2006) Human Vgamma9Vdelta2 T cells: promising new leads for immunotherapy of infections and tumors. Curr Opin Immunol 18(5):539–546

    Article  PubMed  CAS  Google Scholar 

  • Born W, Happ MP et al (1990) Recognition of heat shock proteins and gamma delta cell function. Immunol Today 11(2):40–43

    Article  PubMed  CAS  Google Scholar 

  • Bryant NL, Suarez-Cuervo C et al (2009a) Characterization and immunotherapeutic potential of γδ T cells in patients with glioblastoma. Neuro-Oncology 11(4):357–67

    Article  PubMed  CAS  Google Scholar 

  • Bryant NL, Suarez-Cuervo C et al (2009b) Characterization and immunotherapeutic potential of {gamma}{delta} T cells in patients with glioblastoma. Neuro Oncol 11(4):357–67

    Article  PubMed  CAS  Google Scholar 

  • Bukowski JF, Morita CT et al (1999) Human gamma delta T cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity 11(1):57–65

    Article  PubMed  CAS  Google Scholar 

  • Bukowski JF, Morita CT et al (1995) V gamma 2V delta 2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer. J Immunol 154(3):998–1006

    PubMed  CAS  Google Scholar 

  • Catellani S, Poggi A et al (2007) Expansion of Vdelta1 T lymphocytes producing IL-4 in low-grade non-Hodgkin lymphomas expressing UL-16-binding proteins. Blood 109(5):2078–2085

    Article  PubMed  CAS  Google Scholar 

  • Chaleff S, Otto M et al (2007) A large-scale method for the selective depletion of alphabeta T ­lymphocytes from PBSC for allogeneic transplantation. Cytotherapy 9(8):746–754

    Article  PubMed  CAS  Google Scholar 

  • Chien YH, Konigshofer Y (2007) Antigen recognition by gammadelta T cells. Immunol Rev 215:46–58

    Article  PubMed  CAS  Google Scholar 

  • Choudhary A, Davodeau F et al (1995) Selective lysis of autologous tumor cells by recurrent gamma delta tumor-infiltrating lymphocytes from renal carcinoma. J Immunol 154(8):3932–3940

    PubMed  CAS  Google Scholar 

  • Cobbs CS, Soroceanu L et al (2007) Human cytomegalovirus induces cellular tyrosine kinase signaling and promotes glioma cell invasiveness. J Neurooncol 85(3):271–280

    Article  PubMed  CAS  Google Scholar 

  • Colella TA, Bullock TN et al (2000) Self-tolerance to the murine homologue of a tyrosinase-derived melanoma antigen: implications for tumor immunotherapy. J Exp Med 191(7):1221–1232

    Article  PubMed  CAS  Google Scholar 

  • Corvaisier M, Moreau-Aubry A et al (2005) V gamma 9V delta 2 T cell response to colon carcinoma cells. J Immunol 175(8):5481–5488

    PubMed  CAS  Google Scholar 

  • Cresswell P (1996) Invariant chain structure and MHC class II function. Cell 84(4):505–507

    Article  PubMed  CAS  Google Scholar 

  • Das H, Groh V et al (2001) MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity 15(1):83–93

    Article  PubMed  CAS  Google Scholar 

  • Dazzi F, Szydlo RM et al (2000) Comparison of single-dose and escalating-dose regimens of donor lymphocyte infusion for relapse after allografting for chronic myeloid leukemia [see comment]. Blood 95(1):67–71

    PubMed  CAS  Google Scholar 

  • Dechanet J, Merville P et al (1999) Implication of gammadelta T cells in the human immune response to cytomegalovirus. J Clin Invest 103(10):1437–1449

    Article  PubMed  CAS  Google Scholar 

  • Dieli F, Poccia F et al (2003) Differentiation of effector/memory Vdelta2 T cells and migratory routes in lymph nodes or inflammatory sites. J Exp Med 198(3):391–397

    Article  PubMed  CAS  Google Scholar 

  • Dieli F, Vermijlen D et al (2007) Targeting human {gamma}delta T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 67(15):7450–7457

    Article  PubMed  CAS  Google Scholar 

  • Disis ML, Bernhard H et al (2009) Use of tumour-responsive T cells as cancer treatment. Lancet 373(9664):673–683

    Article  PubMed  CAS  Google Scholar 

  • Dolstra H, Fredrix H et al (2001) TCR gamma delta cytotoxic T lymphocytes expressing the killer cell-inhibitory receptor p58.2 (CD158b) selectively lyse acute myeloid leukemia cells. Bone Marrow Transplant 27(10):1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Dougan M, Dranoff G (2009) The immune response to tumors. Curr Protoc Immunol. Chap. 20(Unit 20):11

    Google Scholar 

  • Dougan M, Dranoff G (2009b) Immune therapy for cancer. Annu Rev Immunol 27:83–117

    Article  PubMed  CAS  Google Scholar 

  • Drobyski WR, Majewski D (1997) Donor gamma delta T lymphocytes promote allogeneic engraftment across the major histocompatibility barrier in mice. Blood 89(3):1100–1109

    PubMed  CAS  Google Scholar 

  • Drobyski WR, Majewski D et al (1999) Graft-facilitating doses of ex vivo activated gammadelta T cells do not cause lethal murine graft-vs.-host disease. Biol Blood Marrow Transplant 5(4):222–230

    Article  PubMed  CAS  Google Scholar 

  • Drobyski WR, Vodanovic-Jankovic S et al (2000) Adoptively transferred gamma delta T cells indirectly regulate murine graft-versus-host reactivity following donor leukocyte infusion therapy in mice. J Immunol 165(3):1634–1640

    PubMed  CAS  Google Scholar 

  • Dudley ME, Nishimura MI et al (1999) Antitumor immunization with a minimal peptide epitope (G9-209-2M) leads to a functionally heterogeneous CTL response. J Immunother 22(4):288–298

    Article  PubMed  CAS  Google Scholar 

  • Duval M, Yotnda P et al (1995) Potential antileukemic effect of gamma delta T cells in acute lymphoblastic leukemia. Leukemia 9(5):863–868

    PubMed  CAS  Google Scholar 

  • Ebert LM, Meuter S et al (2006) Homing and function of human skin gammadelta T cells and NK cells: relevance for tumor surveillance. J Immunol 176(7):4331–4336

    PubMed  CAS  Google Scholar 

  • Ellison CA, MacDonald GC et al (1995) Gamma delta T cells in the pathobiology of murine acute graft-versus-host disease. Evidence that gamma delta T cells mediate natural killer-like cytotoxicity in the host and that elimination of these cells from donors significantly reduces mortality. J Immunol 155(9):4189–4198

    PubMed  CAS  Google Scholar 

  • Ferrarini M, Ferrero E et al (2002) Human gammadelta T cells: a nonredundant system in the immune-surveillance against cancer. Trends Immunol 23(1):14–18

    Article  PubMed  CAS  Google Scholar 

  • Ferrarini M, Heltai S et al (1995) Daudi lymphoma killing triggers the programmed death of cytotoxic V gamma 9/V delta 2 T lymphocytes. J Immunol 154(8):3704–3712

    PubMed  CAS  Google Scholar 

  • Ferrarini M, Heltai S, Pupa SM, Mernard S, Zocchi R (1996) Killing of laminin receptor-positive human lung cancers by tumor-infiltrating lymphocytes bearing gd+ T-cell receptors. Journal of the National Cancer Institute 88:436–441

    Article  PubMed  CAS  Google Scholar 

  • Ferrarini M, Pupa SM et al (1994) Distinct pattern of HSP72 and monomeric laminin receptor expression in human lung cancers infiltrated by gamma/delta T lymphocytes. Int J Cancer 57(4):486–490

    Article  PubMed  CAS  Google Scholar 

  • Fleischhauer K, Tanzarella S et al (1997) Functional heterogeneity of HLA-A*02 subtypes revealed by presentation of a MAGE-3-encoded peptide to cytotoxic T cell clones. J Immunol 159(5):2513–2521

    PubMed  CAS  Google Scholar 

  • Freedman MS, D’Souza S et al (1997) gamma delta T-cell-human glial cell interactions. I. In vitro induction of gammadelta T-cell expansion by human glial cells. J Neuroimmunol 74(1–2):135–142

    Article  PubMed  CAS  Google Scholar 

  • Fu YX, Vollmer M et al (1994) Structural requirements for peptides that stimulate a subset of gamma delta T cells. J Immunol 152(4):1578–1588

    PubMed  CAS  Google Scholar 

  • Fujimiya Y, Suzuki Y et al (1997) In vitro interleukin 12 activation of peripheral blood CD3(+)CD56(+) and CD3(+)CD56(−) gammadelta T cells from glioblastoma patients. Clin Cancer Res 3(4):633–643

    PubMed  CAS  Google Scholar 

  • Fujishima N, Hirokawa M et al (2007) Skewed T cell receptor repertoire of Vdelta1(+) gammadelta T lymphocytes after human allogeneic haematopoietic stem cell transplantation and the potential role for Epstein-Barr virus-infected B cells in clonal restriction. Clin Exp Immunol 149(1):70–79

    Article  PubMed  CAS  Google Scholar 

  • Gaafar A, Aljurf MD et al (2009) Defective gammadelta T-cell function and granzyme B gene polymorphism in a cohort of newly diagnosed breast cancer patients. Exp Hematol 37(7):838–848

    Article  PubMed  CAS  Google Scholar 

  • Germain RN (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76(2):287–299

    Article  PubMed  CAS  Google Scholar 

  • Germain RN, Margulies DH (1993) The biochemistry and cell biology of antigen processing and presentation. Annu Rev Immunol 11:403–450

    Article  PubMed  CAS  Google Scholar 

  • Girardi M, Oppenheim DE et al (2001) Regulation of cutaneous malignancy by gammadelta T cells. Science 294(5542):605–609

    Article  PubMed  CAS  Google Scholar 

  • Glatzel A, Wesch D et al (2002) Patterns of chemokine receptor expression on peripheral blood gamma delta T lymphocytes: strong expression of CCR5 is a selective feature of V delta 2/V gamma 9 gamma delta T cells. J Immunol 168(10):4920–4929

    PubMed  CAS  Google Scholar 

  • Gleimer M, Parham P (2003) Stress management: MHC class I and class I-like molecules as reporters of cellular stress. Immunity 19(4):469–477

    Article  PubMed  CAS  Google Scholar 

  • Gober HJ, Kistowska M et al (2003) Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 197(2):163–168

    Article  PubMed  CAS  Google Scholar 

  • Godder KT, Henslee-Downey PJ et al (2007) Long term disease-free survival in acute leukemia patients recovering with increased gammadelta T cells after partially mismatched related donor bone marrow transplantation. Bone Marrow Transplant 39(12):751–757

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Rhinehart R et al (1999) Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA 96(12):6879–6884

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Steinle A et al (1998) Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 279(5357):1737–1740

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Wu J et al (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419(6908):734–738

    Article  PubMed  CAS  Google Scholar 

  • Guglielmi C, Arcese W et al (2002) Donor lymphocyte infusion for relapsed chronic myelogenous leukemia: prognostic relevance of the initial cell dose. Blood 100(2):397–405

    Article  PubMed  CAS  Google Scholar 

  • Guo B, Hollmig K et al (2001) In vitro activity of apoptosis-resistant human gd-T cells against solid malignances. Journal of Clinical Oncology 20:267 (abstract)

    Google Scholar 

  • Guo B, Hollmig K et al (2002) Down-regulation of IL-2 receptor a (CD25) characterizes human gd-T cells rendered resistant to apoptosis after CD2 engagement in the presence of IL-12. Cancer Immunol Immunother 50:625–637

    Article  PubMed  CAS  Google Scholar 

  • Guo RT, Cao R et al (2007) Bisphosphonates target multiple sites in both cis- and trans-­prenyltransferases. Proc Natl Acad Sci USA 104(24):10022–10027

    Article  PubMed  CAS  Google Scholar 

  • Guy-Grand D, Cerf-Bensussan N et al (1991) Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. J Exp Med 173(2):471–481

    Article  PubMed  CAS  Google Scholar 

  • Haas W, Pereira P et al (1993) Gamma/delta T cells. Annu Rev Immunol 11:637–686

    Article  PubMed  CAS  Google Scholar 

  • Hacker G, Kromer S et al (1992) V delta 1+ subset of human gamma delta T cells responds to ligands expressed by EBV-infected Burkitt lymphoma cells and transformed B lymphocytes. J Immunol 149(12):3984–3989

    PubMed  CAS  Google Scholar 

  • Halary F, Pitard V et al (2005) Shared reactivity of V{delta}2(neg) {gamma}{delta} T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J Exp Med 201(10):1567–1578

    Article  PubMed  CAS  Google Scholar 

  • Hayday A, Tigelaar R (2003) Immunoregulation in the tissues by gammadelta T cells. Nat Rev Immunol 3(3):233–242

    Article  PubMed  CAS  Google Scholar 

  • Hayday AC (2000) [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026

    Article  PubMed  CAS  Google Scholar 

  • Henslee PJ, Thompson JS et al (1987) T cell depletion of HLA and haploidentical marrow reduces graft-versus-host disease but it may impair a graft-versus-leukemia effect. Transplant Proc 19(1 Pt 3):2701–2706

    PubMed  CAS  Google Scholar 

  • Inge TH, McCoy KM et al (1992) Immunomodulatory effects of transforming growth factor-beta on T lymphocytes. Induction of CD8 expression in the CTLL-2 cell line and in normal thymocytes. J Immunol 148(12):3847–3856

    PubMed  CAS  Google Scholar 

  • Ismaili J, Olislagers V et al (2002) Human gamma delta T cells induce dendritic cell maturation. Clin Immunol 103(3 Pt 1):296–302

    Article  PubMed  CAS  Google Scholar 

  • Jachimczak P, Bogdahn U et al (1993) The effect of transforming growth factor-beta 2-specific phosphorothioate-anti-sense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma. J Neurosurg 78(6):944–951

    Article  PubMed  CAS  Google Scholar 

  • Janssen O, Wesselborg S et al (1991) T cell receptor/CD3-signaling induces death by apoptosis in human T cell receptor gamma delta  +  T cells. J Immunol 146(1):35–39

    PubMed  CAS  Google Scholar 

  • Kabelitz D, Wesch D et al (2007) Perspectives of gammadelta T cells in tumor immunology. Cancer Res 67(1):5–8

    Article  PubMed  CAS  Google Scholar 

  • Kabelitz D, Wesch D et al (2004) Characterization of tumor reactivity of human V gamma 9V delta 2 gamma delta T cells in vitro and in SCID mice in vivo. J Immunol 173(11):6767–6776

    PubMed  CAS  Google Scholar 

  • Kang N, Tang L et al (2009) Identification and characterization of Foxp3(+) gammadelta T cells in mouse and human. Immunol Lett 125(2):105–113

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Tanaka Y et al (2001) Targeting of tumor cells for human gammadelta T cells by nonpeptide antigens. J Immunol 167(9):5092–5098

    PubMed  CAS  Google Scholar 

  • Kawakami Y, Robbins PF et al (1998) Identification of new melanoma epitopes on melanosomal proteins recognized by tumor infiltrating T lymphocytes restricted by HLA-A1, -A2, and -A3 alleles. J Immunol 161(12):6985–6992

    PubMed  CAS  Google Scholar 

  • Kawanishi Y, Passweg J et al (1997) Effect of T cell subset dose on outcome of T cell-depleted bone marrow transplantation. Bone Marrow Transplant 19(11):1069–1077

    Article  PubMed  CAS  Google Scholar 

  • Keever-Taylor CA, Craig A et al (2001) Complement-mediated T-cell depletion of bone marrow: comparison of T10B9.1A-31 and Muromonab-Orthoclone OKT3. Cytotherapy 3(6):467–481

    Article  PubMed  CAS  Google Scholar 

  • Kim CJ, Parkinson DR et al (1998) Immunodominance across HLA polymorphism: implications for cancer immunotherapy. J Immunother 21(1):1–16

    Article  PubMed  Google Scholar 

  • Kobayashi H, Tanaka Y et al (2007) Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 56(4):469–476

    Article  PubMed  CAS  Google Scholar 

  • Kolb HJ, Holler E (1997) Adoptive immunotherapy with donor lymphocyte transfusions. Curr Opin Oncol 9(2):139–145

    Article  PubMed  CAS  Google Scholar 

  • Kondo M, Sakuta K et al (2008) Zoledronate facilitates large-scale ex vivo expansion of functional gammadelta T cells from cancer patients for use in adoptive immunotherapy. Cytotherapy 10(8):842–856

    Article  PubMed  CAS  Google Scholar 

  • Kong Y, Cao W et al (2009) The NKG2D ligand ULBP4 binds to TCRgamma9/delta2 and induces cytotoxicity to tumor cells through both TCRgammadelta and NKG2D. Blood 114(2):310–317

    Article  PubMed  CAS  Google Scholar 

  • Kunzmann V, Bauer E et al (2000) Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96(2):384–392

    PubMed  CAS  Google Scholar 

  • Kunzmann V, Kimmel B et al (2009) Inhibition of phosphoantigen-mediated gammadelta T-cell proliferation by CD4+ CD25+ FoxP3+ regulatory T cells. Immunology 126(2):256–267

    Article  PubMed  CAS  Google Scholar 

  • Laad AD, Thomas ML et al (1999) Human gamma delta T cells recognize heat shock protein-60 on oral tumor cells. Int J Cancer 80(5):709–714

    Article  PubMed  CAS  Google Scholar 

  • Lamb LS Jr, Gee AP, Hazlett LJ, Musk P et al (1999) Influence of T cell depletion method on ­circulating gd+ T cell reconstitution and potential role in the graft-versus-leukemia effect. Cytotherapy 1:7–19

    Article  PubMed  Google Scholar 

  • Lamb LS Jr, Henslee-Downey PJ et al (1996) Increased frequency of TCR gamma delta  +  T cells in disease-free survivors following T cell-depleted, partially mismatched, related donor bone marrow transplantation for leukemia. J Hematother 5(5):503–509

    Article  PubMed  Google Scholar 

  • Lamb LS Jr, Musk P et al (2001) Human gammadelta(+) T lymphocytes have in vitro graft vs leukemia activity in the absence of an allogeneic response. Bone Marrow Transplant 27(6):601–606

    Article  PubMed  Google Scholar 

  • Lau SK, Chen YY et al (2005) Lack of association of cytomegalovirus with human brain tumors. Mod Pathol 18(6):838–843

    Article  PubMed  CAS  Google Scholar 

  • Lefrancois L, Puddington L (1995) Extrathymic intestinal T-cell development: virtual reality? Immunol Today 16(1):16–21

    Article  PubMed  CAS  Google Scholar 

  • Leslie DS, Vincent MS et al (2002) CD1-mediated gamma/delta T cell maturation of dendritic cells. J Exp Med 196(12):1575–1584

    Article  PubMed  CAS  Google Scholar 

  • Li J, Herold MJ et al (2009) Reduced expression of the mevalonate pathway enzyme farnesyl pyrophosphate synthase unveils recognition of tumor cells by Vgamma9Vdelta2 T cells. J Immunol 182(12):8118–8124

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Eltoum IE et al (2008) Protective immunosurveillance and therapeutic antitumor activity of gammadelta T cells demonstrated in a mouse model of prostate cancer. J Immunol 180(9):6044–6053

    PubMed  CAS  Google Scholar 

  • Lopez RD, Xu S et al (2000) CD2-mediated IL-12-dependent signals render human gamma-delta T cells resistant to mitogen-induced apoptosis, permitting the large-scale ex vivo expansion of functionally distinct lymphocytes: implications for the development of adoptive immunotherapy strategies. Blood 96(12):3827–3837

    PubMed  CAS  Google Scholar 

  • Maeurer M, Zitvogel L et al (1995) Human intestinal V delta 1+ T cells obtained from patients with colon cancer respond exclusively to SEB but not to SEA. Nat Immun 14(4):188–197

    PubMed  CAS  Google Scholar 

  • Maeurer MJ, Martin D et al (1996) Human intestinal Vdelta1+ lymphocytes recognize tumor cells of epithelial origin. J Exp Med 183(4):1681–1696

    Article  PubMed  CAS  Google Scholar 

  • Martinet L, Fleury-Cappellesso S et al (2009a) A regulatory cross-talk between Vgamma9Vdelta2 T lymphocytes and mesenchymal stem cells. Eur J Immunol 39(3):752–762

    Article  PubMed  CAS  Google Scholar 

  • Martinet L, Poupot R et al (2009b) Pitfalls on the roadmap to gammadelta T cell-based cancer immunotherapies. Immunol Lett 124(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Mateo L, Gardner J et al (1999) An HLA-A2 polyepitope vaccine for melanoma immunotherapy. J Immunol 163(7):4058–4063

    PubMed  CAS  Google Scholar 

  • Meeh PF, King M et al (2006) Characterization of the gammadelta T cell response to acute leukemia. Cancer Immunol Immunother 55(9):1072–1080

    Article  PubMed  Google Scholar 

  • Miller JS, Soignier Y et al (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105(8):3051–3057

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DA, Xie W et al (2008) Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro Oncol 10(1):10–18

    Article  PubMed  Google Scholar 

  • Miyagawa F, Tanaka Y et al (2001) Essential contribution of germline-encoded lysine residues in Jgamma1.2 segment to the recognition of nonpeptide antigens by human gammadelta T cells. J Immunol 167(12):6773–6779

    PubMed  CAS  Google Scholar 

  • Montero A, Savani BN et al (2006) T cell depleted peripheral blood stem cell allotransplantation with T cell add back for patients with hematological malignancies: effect of chronic GVHD on outcome. Biol Blood Marrow Transplant 12(12):1318–1325

    Article  PubMed  Google Scholar 

  • Morita CT, Beckman EM et al (1995) Direct presentation of nonpeptide prenyl pyrophosphate antigens to human gamma delta T cells. Immunity 3(4):495–507

    Article  PubMed  CAS  Google Scholar 

  • Nitahara A, Shimura H et al (2006) NKG2D ligation without T cell receptor engagement triggers both cytotoxicity and cytokine production in dendritic epidermal T cells. J Invest Dermatol 126(5):1052–1058

    Article  PubMed  CAS  Google Scholar 

  • O’Brien RL, Roark CL et al (2007) gammadelta T-cell receptors: functional correlations. Immunol Rev 215:77–88

    Article  PubMed  Google Scholar 

  • Parker CM, Groh V et al (1990) Evidence for extrathymic changes in the T cell receptor gamma/delta repertoire. J Exp Med 171(5):1597–1612

    Article  PubMed  CAS  Google Scholar 

  • Peng G, Wang HY et al (2007) Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity 27(2):334–348

    Article  PubMed  CAS  Google Scholar 

  • Pennington DJ, Vermijlen D et al (2005) The integration of conventional and unconventional T cells that characterizes cell-mediated responses. Adv Immunol 87:27–59

    Article  PubMed  CAS  Google Scholar 

  • Pitard V, Roumanes D et al (2008) Long-term expansion of effector/memory Vdelta2-gammadelta T cells is a specific blood signature of CMV infection. Blood 112(4):1317–1324

    Article  PubMed  CAS  Google Scholar 

  • Poggi A, Carosio R et al (2004a) Migration of V delta 1 and V delta 2 T cells in response to CXCR3 and CXCR4 ligands in healthy donors and HIV-1-infected patients: competition by HIV-1 Tat. Blood 103(6):2205–2213

    Article  PubMed  CAS  Google Scholar 

  • Poggi A, Catellani S et al (2007) Adhesion molecules and kinases involved in gammadelta T cells migratory pathways: Implications for viral and autoimmune diseases. Curr Med Chem 14(30):3166–3170

    Article  PubMed  CAS  Google Scholar 

  • Poggi A, Venturino C et al (2004b) Vdelta1 T lymphocytes from B-CLL patients recognize ULBP3 expressed on leukemic B cells and up-regulated by trans-retinoic acid. Cancer Res 64(24):9172–9179

    Article  PubMed  CAS  Google Scholar 

  • Prinz I, Sansoni A et al (2006) Visualization of the earliest steps of gammadelta T cell development in the adult thymus. Nat Immunol 7(9):995–1003

    Article  PubMed  CAS  Google Scholar 

  • Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3(10):781–790

    Article  PubMed  CAS  Google Scholar 

  • Rincon-Orozco B, Kunzmann V et al (2005) Activation of V gamma 9V delta 2 T cells by NKG2D. J Immunol 175(4):2144–2151

    PubMed  CAS  Google Scholar 

  • Salot S, Laplace C et al (2007) Large scale expansion of gamma 9 delta 2 T lymphocytes: Innacell gamma delta cell therapy product. J Immunol Methods 326(1–2):63–75

    Article  PubMed  CAS  Google Scholar 

  • Scheurer ME, Bondy ML et al (2008) Detection of human cytomegalovirus in different histological types of gliomas. Acta Neuropathol 116(1):79–86

    Article  PubMed  CAS  Google Scholar 

  • Schilbach K, Frommer K et al (2008) Immune response of human propagated gammadelta-T-cells to neuroblastoma recommend the Vdelta1+ subset for gammadelta-T-cell-based immunotherapy. J Immunother 31(9):896–905

    Article  PubMed  CAS  Google Scholar 

  • Schilbach KE, Geiselhart A et al (2000) Human gammadelta T lymphocytes exert natural and IL-2-induced cytotoxicity to neuroblastoma cells. J Immunother 23(5):536–548

    Article  PubMed  CAS  Google Scholar 

  • Smyth MJ, Strobl SL et al (1991) Regulation of lymphokine-activated killer activity and pore-forming protein gene expression in human peripheral blood CD8+ T lymphocytes. Inhibition by transforming growth factor-beta. J Immunol 146(10):3289–3297

    PubMed  CAS  Google Scholar 

  • Spada FM, Grant EP et al (2000) Self-recognition of CD1 by gamma/delta T cells: implications for innate immunity. J Exp Med 191(6):937–948

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Fujimiya Y et al (1999) Enhancing effect of tumor necrosis factor (TNF)-alpha, but not IFN-gamma, on the tumor-specific cytotoxicity of gammadeltaT cells from glioblastoma patients. Cancer Lett 140(1–2):161–167

    Article  PubMed  CAS  Google Scholar 

  • Taghon T, Rothenberg EV (2008) Molecular mechanisms that control mouse and human TCR-alphabeta and TCR-gammadelta T cell development. Semin Immunopathol 30(4):383–398

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Morita CT et al (1995) Natural and synthetic non-peptide antigens recognized by human gamma delta T cells. Nature 375(6527):155–158

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Sano S et al (1994) Nonpeptide ligands for human gamma delta T cells. Proc Natl Acad Sci USA 91(17):8175–8179

    Article  PubMed  CAS  Google Scholar 

  • Whang MI, Guerra N et al (2009) Costimulation of dendritic epidermal gammadelta T cells by a new NKG2D ligand expressed specifically in the skin. J Immunol 182(8):4557–4564

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm M, Kunzmann V et al (2003) Gammadelta T cells for immune therapy of patients with lymphoid malignancies. Blood 102(1):200–206

    Article  PubMed  CAS  Google Scholar 

  • Wilson A, Capone M et al (1999) Unexpectedly late expression of intracellular CD3epsilon and TCR gammadelta proteins during adult thymus development. Int Immunol 11(10):1641–1650

    Article  PubMed  CAS  Google Scholar 

  • Wright A, Lee JE et al (1989) Cytotoxic T lymphocytes specific for self tumor immunoglobulin express T cell receptor delta chain. J Exp Med 169(5):1557–1564

    Article  PubMed  CAS  Google Scholar 

  • Wrobel P, Shojaei H et al (2007) Lysis of a broad range of epithelial tumour cells by human gamma delta T cells: involvement of NKG2D ligands and T-cell receptor- versus NKG2D-dependent recognition. Scand J Immunol 66(2–3):320–328

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Groh V et al (2002) T cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial gamma delta T cells. J Immunol 169(3):1236–1240

    PubMed  CAS  Google Scholar 

  • Xiong N, Raulet DH (2007) Development and selection of gammadelta T cells. Immunol Rev 215:15–31

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Zhang H et al (2007) Gammadelta T cells recognize tumor cells via CDR3delta region. Mol Immunol 44(4):302–310

    Article  PubMed  CAS  Google Scholar 

  • Yannelli JR, Hyatt C et al (1996) Growth of tumor-infiltrating lymphocytes from human solid cancers: summary of a 5-year experience. Int J Cancer 65(4):413–421

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Huang J et al (2006) Vdelta1 T cell receptor binds specifically to MHC I chain related A: molecular and biochemical evidences. Biochem Biophys Res Commun 339(1):232–240

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Wei YQ et al (1995) Accumulation of gamma/delta T cells in human dysgerminoma and seminoma: roles in autologous tumor killing and granuloma formation. Immunol Invest 24(4):607–618

    Article  PubMed  CAS  Google Scholar 

  • Zocchi MR, Poggi A (2004) Role of gammadelta T lymphocytes in tumor defense. Front Biosci 9:2588–2604

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence S. Lamb Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lamb, L.S. (2012). γδ T Cells in Cancer. In: Wang, R. (eds) Innate Immune Regulation and Cancer Immunotherapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9914-6_3

Download citation

Publish with us

Policies and ethics