Skip to main content

Methods for Cancer Epigenome Analysis

  • Chapter
  • First Online:
Epigenetic Alterations in Oncogenesis

Abstract

Accurate detection of epimutations in tumor cells is crucial for ­understanding the molecular pathogenesis of cancer. Alterations in DNA methylation in cancer are functionally important and clinically relevant, but even this well-studied area is continually re-evaluated in light of unanticipated results, such as the strong association between aberrant DNA methylation in adult tumors and polycomb group profiles in embryonic stem cells, cancer-associated genetic mutations in epigenetic regulators such as DNMT3A and TET family genes, and the discovery of altered 5-hydroxymethylcytosine, a product of TET proteins acting on 5-methylcytosine, in human tumors with TET mutations. The abundance and distribution of covalent histone modifications in primary cancer tissues relative to normal cells is an important but largely uncharted area, although there is good evidence for a mechanistic role of cancer-specific alterations in histone modifications in tumor etiology, drug response, and tumor progression. Meanwhile, the discovery of new epigenetic marks continues, and there are many useful methods for epigenome analysis applicable to primary tumor samples, in addition to cancer cell lines. For DNA methylation and hydroxymethylation, next-generation sequencing allows increasingly inexpensive and quantitative whole-genome profiling. Similarly, the refinement and maturation of chromatin immunoprecipitation with next-generation sequencing (ChIP-seq) has made possible genome-wide mapping of histone modifications, open chromatin, and transcription factor binding sites. Computational tools have been developed apace with these epigenome methods to better enable accurate interpretation of the profiling data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5MC:

5-methylcytosine

5HMC:

5-hydroxymethylcytosine

ChIP-seq:

Chromatin immunoprecipitation-sequencing

MBD:

Methyl binding domain

MeDIP:

Methyl DNA immunoprecipitation

MRE:

Methyl-sensitive restriction enzyme

RRBS:

Reduced representation bisulfite sequencing

References

  1. Trasler JM, Trasler DG, Bestor TH, Li E, Ghibu F (1996) DNA methyltransferase in normal and Dnmtn/Dnmtn mouse embryos. Dev Dyn 206(3):239–247. doi:10.1002/(SICI)1097-0177(199607)206:3<239::AID-AJA2>3.0.CO;2-J [pii] 10.1002/(SICI)1097-0177(199607) 206:3<239::AID-AJA2>3.0.CO;2-J

    PubMed  CAS  Google Scholar 

  2. Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395(6697):89–93

    PubMed  CAS  Google Scholar 

  3. Maraschio P, Zuffardi O, Dalla Fior T, Tiepolo L (1988) Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome. J Med Genet 25(3):173–180

    PubMed  CAS  Google Scholar 

  4. Xu GL, Bestor TH, Bourc’his D, Hsieh CL, Tommerup N, Bugge M, Hulten M, Qu X, Russo JJ, Viegas-Pequignot E (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402(6758):187–191. doi:10.1038/46052

    PubMed  CAS  Google Scholar 

  5. Clark SJ, Harrison J, Frommer M (1995) CpNpG methylation in mammalian cells. Nat Genet 10(1):20–27. doi:10.1038/ng0595-20

    PubMed  CAS  Google Scholar 

  6. Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA 97(10):5237–5242. doi:97/10/5237 [pii]

    PubMed  CAS  Google Scholar 

  7. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322. doi:nature08514 [pii] 10.1038/nature08514

    PubMed  CAS  Google Scholar 

  8. Ziller MJ, Muller F, Liao J, Zhang Y, Gu H, Bock C, Boyle P, Epstein CB, Bernstein BE, Lengauer T, Gnirke A, Meissner A (2011) Genomic distribution and inter-sample variation of non-CpG methylation across human cell types. PLoS Genet 7(12):e1002389. doi:10.1371/journal.pgen.1002389 PGENETICS-D-11-00694 [pii]

    PubMed  CAS  Google Scholar 

  9. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324(5929):929–930. doi:1169786 [pii] 10.1126/science.1169786

    PubMed  CAS  Google Scholar 

  10. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935. doi:1170116 [pii] 10.1126/science.1170116

    PubMed  CAS  Google Scholar 

  11. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047):1300–1303. doi:science.1210597 [pii] 10.1126/science.1210597

    PubMed  CAS  Google Scholar 

  12. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047):1303–1307. doi:science.1210944 [pii] 10.1126/science.1210944

    PubMed  CAS  Google Scholar 

  13. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146(6):1016–1028. doi:S0092-8674(11)00891-9 [pii] 10.1016/j.cell.2011.08.008

    PubMed  CAS  Google Scholar 

  14. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schubeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37(8):853–862. doi:ng1598 [pii] 10.1038/ng1598

    PubMed  CAS  Google Scholar 

  15. Rauch T, Li H, Wu X, Pfeifer GP (2006) MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res 66(16):7939–7947. doi:66/16/7939 [pii] 10.1158/0008-5472.CAN-06-1888

    PubMed  CAS  Google Scholar 

  16. Rauch T, Wang Z, Zhang X, Zhong X, Wu X, Lau SK, Kernstine KH, Riggs AD, Pfeifer GP (2007) Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci USA 104(13):5527–5532. doi:0701059104 [pii] 10.1073/pnas.0701059104

    PubMed  CAS  Google Scholar 

  17. Rauch TA, Wu X, Zhong X, Riggs AD, Pfeifer GP (2009) A human B cell methylome at 100-base pair resolution. Proc Natl Acad Sci USA 106(3):671–678. doi:0812399106 [pii] 10.1073/pnas.0812399106

    PubMed  CAS  Google Scholar 

  18. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89(5):1827–1831

    PubMed  CAS  Google Scholar 

  19. Pfeifer GP, Riggs AD (1996) Genomic sequencing by ligation-mediated PCR. Mol Biotechnol 5(3):281–288

    PubMed  CAS  Google Scholar 

  20. Clark SJ, Statham A, Stirzaker C, Molloy PL, Frommer M (2006) DNA methylation: bisulphite modification and analysis. Nat Protoc 1(5):2353–2364. doi:nprot.2006.324 [pii] 10.1038/nprot.2006.324

    PubMed  CAS  Google Scholar 

  21. Gitan RS, Shi H, Chen CM, Yan PS, Huang TH (2002) Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res 12(1):158–164. doi:10.1101/gr.202801

    PubMed  CAS  Google Scholar 

  22. Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P, Tahiliani M, Daley GQ, Liu XS, Ecker JR, Milos PM, Agarwal S, Rao A (2011) Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473(7347):394–397. doi:nature10102 [pii] 10.1038/nature10102

    PubMed  CAS  Google Scholar 

  23. Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang B, Godley LA, Hicks LM, Lahn BT, Jin P, He C (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29(1):68–72. doi:nbt.1732 [pii] 10.1038/nbt.1732

    PubMed  CAS  Google Scholar 

  24. Khulan B, Thompson RF, Ye K, Fazzari MJ, Suzuki M, Stasiek E, Figueroa ME, Glass JL, Chen Q, Montagna C, Hatchwell E, Selzer RR, Richmond TA, Green RD, Melnick A, Greally JM (2006) Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res 16(8):1046–1055. doi:gr.5273806 [pii] 10.1101/gr.5273806

    PubMed  CAS  Google Scholar 

  25. Oda M, Glass JL, Thompson RF, Mo Y, Olivier EN, Figueroa ME, Selzer RR, Richmond TA, Zhang X, Dannenberg L, Green RD, Melnick A, Hatchwell E, Bouhassira EE, Verma A, Suzuki M, Greally JM (2009) High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res 37(12):3829–3839. doi:gkp260 [pii] 10.1093/nar/gkp260

    PubMed  CAS  Google Scholar 

  26. Brunner AL, Johnson DS, Kim SW, Valouev A, Reddy TE, Neff NF, Anton E, Medina C, Nguyen L, Chiao E, Oyolu CB, Schroth GP, Absher DM, Baker JC, Myers RM (2009) Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 19(6):1044–1056. doi:gr.088773.108 [pii] 10.1101/gr.088773.108

    PubMed  CAS  Google Scholar 

  27. Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH, Xie B, Daley GQ, Church GM (2009) Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 27(4):361–368. doi:nbt.1533 [pii] 10.1038/nbt.1533

    PubMed  CAS  Google Scholar 

  28. Hu M, Yao J, Cai L, Bachman KE, van den Brule F, Velculescu V, Polyak K (2005) Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet 37(8):899–905. doi:ng1596 [pii] 10.1038/ng1596

    PubMed  CAS  Google Scholar 

  29. Bloushtain-Qimron N, Yao J, Snyder EL, Shipitsin M, Campbell LL, Mani SA, Hu M, Chen H, Ustyansky V, Antosiewicz JE, Argani P, Halushka MK, Thomson JA, Pharoah P, Porgador A, Sukumar S, Parsons R, Richardson AL, Stampfer MR, Gelman RS, Nikolskaya T, Nikolsky Y, Polyak K (2008) Cell type-specific DNA methylation patterns in the human breast. Proc Natl Acad Sci USA 105(37):14076–14081. doi:0805206105 [pii] 10.1073/pnas.0805206105

    PubMed  CAS  Google Scholar 

  30. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257. doi:nature09165 [pii] 10.1038/nature09165

    PubMed  CAS  Google Scholar 

  31. Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, Johnson BE, Fouse SD, Delaney A, Zhao Y, Olshen A, Ballinger T, Zhou X, Forsberg KJ, Gu J, Echipare L, O’Geen H, Lister R, Pelizzola M, Xi Y, Epstein CB, Bernstein BE, Hawkins RD, Ren B, Chung WY, Gu H, Bock C, Gnirke A, Zhang MQ, Haussler D, Ecker JR, Li W, Farnham PJ, Waterland RA, Meissner A, Marra MA, Hirst M, Milosavljevic A, Costello JF (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 28(10):1097–1105. doi:nbt.1682 [pii] 10.1038/nbt.1682

    PubMed  CAS  Google Scholar 

  32. Rabinowicz PD, Schutz K, Dedhia N, Yordan C, Parnell LD, Stein L, McCombie WR, Martienssen RA (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nat Genet 23(3):305–308. doi:10.1038/15479

    PubMed  CAS  Google Scholar 

  33. Irizarry RA, Ladd-Acosta C, Carvalho B, Wu H, Brandenburg SA, Jeddeloh JA, Wen B, Feinberg AP (2008) Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res 18(5):780–790. doi:gr.7301508 [pii] 10.1101/gr.7301508

    PubMed  CAS  Google Scholar 

  34. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41(2):178–186. doi:ng.298 [pii] 10.1038/ng.298

    PubMed  CAS  Google Scholar 

  35. Jin SG, Kadam S, Pfeifer GP (2010) Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res 38(11):e125. doi:gkq223 [pii] 10.1093/nar/gkq223

    PubMed  Google Scholar 

  36. Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473(7347):398–402. doi:nature10008 [pii] 10.1038/nature10008

    PubMed  CAS  Google Scholar 

  37. Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J, Barbera AJ, Zheng L, Zhang H, Huang S, Min J, Nicholson T, Chen T, Xu G, Shi Y, Zhang K, Shi YG (2011) Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell 42(4):451–464. doi:S1097-2765(11)00283-8 [pii] 10.1016/j.molcel.2011.04.005

    PubMed  CAS  Google Scholar 

  38. Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J, Helin K (2011) TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473(7347):343–348. doi:nature10066 [pii] 10.1038/nature10066

    PubMed  CAS  Google Scholar 

  39. Stroud H, Feng S, Morey Kinney S, Pradhan S, Jacobsen SE (2011) 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 12(6):R54. doi:gb-2011-12-6-r54 [pii] 10.1186/gb-2011-12-6-r54

    PubMed  CAS  Google Scholar 

  40. Keshet I, Schlesinger Y, Farkash S, Rand E, Hecht M, Segal E, Pikarski E, Young RA, Niveleau A, Cedar H, Simon I (2006) Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet 38(2):149–153. doi:ng1719 [pii] 10.1038/ng1719

    PubMed  CAS  Google Scholar 

  41. Fouse SD, Shen Y, Pellegrini M, Cole S, Meissner A, Van Neste L, Jaenisch R, Fan G (2008) Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3K4/K27 trimethylation. Cell Stem Cell 2(2):160–169. doi:S1934-5909(07)00327-X [pii] 10.1016/j.stem.2007.12.011

    PubMed  CAS  Google Scholar 

  42. Shen Y, Matsuno Y, Fouse SD, Rao N, Root S, Xu R, Pellegrini M, Riggs AD, Fan G (2008) X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations. Proc Natl Acad Sci USA 105(12):4709–4714. doi:0712018105 [pii] 10.1073/pnas.0712018105

    PubMed  CAS  Google Scholar 

  43. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126(6):1189–1201. doi:S0092-8674(06)01018-X [pii] 10.1016/j.cell.2006.08.003

    PubMed  CAS  Google Scholar 

  44. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39(1):61–69. doi:ng1929 [pii] 10.1038/ng1929

    PubMed  CAS  Google Scholar 

  45. Robinson MD, Stirzaker C, Statham AL, Coolen MW, Song JZ, Nair SS, Strbenac D, Speed TP, Clark SJ (2010) Evaluation of affinity-based genome-wide DNA methylation data: effects of CpG density, amplification bias, and copy number variation. Genome Res 20(12):1719–1729. doi:gr.110601.110 [pii] 10.1101/gr.110601.110

    PubMed  CAS  Google Scholar 

  46. Robinson MD, Statham AL, Speed TP, Clark SJ (2010) Protocol matters: which methylome are you actually studying? Epigenomics 2(4):587–598. doi:10.2217/epi.10.36

    PubMed  CAS  Google Scholar 

  47. Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, Graf S, Johnson N, Herrero J, Tomazou EM, Thorne NP, Backdahl L, Herberth M, Howe KL, Jackson DK, Miretti MM, Marioni JC, Birney E, Hubbard TJ, Durbin R, Tavare S, Beck S (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 26(7):779–785. doi:nbt1414 [pii] 10.1038/nbt1414

    PubMed  CAS  Google Scholar 

  48. Pomraning KR, Smith KM, Freitag M (2009) Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods 47(3):142–150. doi:S1046-2023(08)00182-5 [pii] 10.1016/j.ymeth.2008.09.022

    PubMed  CAS  Google Scholar 

  49. Ruike Y, Imanaka Y, Sato F, Shimizu K, Tsujimoto G (2010) Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing. BMC Genomics 11:137. doi:1471-2164-11-137 [pii] 10.1186/1471-2164-11-137

    PubMed  Google Scholar 

  50. Li N, Ye M, Li Y, Yan Z, Butcher LM, Sun J, Han X, Chen Q, Zhang X, Wang J (2010) Whole genome DNA methylation analysis based on high throughput sequencing technology. Methods 52(3):203–212. doi:S1046-2023(10)00127-1 [pii] 10.1016/j.ymeth.2010.04.009

    PubMed  Google Scholar 

  51. Chavez L, Jozefczuk J, Grimm C, Dietrich J, Timmermann B, Lehrach H, Herwig R, Adjaye J (2010) Computational analysis of genome-wide DNA methylation during the differentiation of human embryonic stem cells along the endodermal lineage. Genome Res 20(10):1441–1450. doi:gr.110114.110 [pii] 10.1101/gr.110114.110

    PubMed  CAS  Google Scholar 

  52. Bock C, Tomazou EM, Brinkman AB, Muller F, Simmer F, Gu H, Jager N, Gnirke A, Stunnenberg HG, Meissner A (2010) Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol 28(10):1106–1114. doi:nbt.1681 [pii] 10.1038/nbt.1681

    PubMed  CAS  Google Scholar 

  53. Feber A, Wilson GA, Zhang L, Presneau N, Idowu B, Down TA, Rakyan VK, Noon LA, Lloyd AC, Stupka E, Schiza V, Teschendorff AE, Schroth GP, Flanagan A, Beck S (2011) Comparative methylome analysis of benign and malignant peripheral nerve sheath tumors. Genome Res 21(4):515–524. doi:gr.109678.110 [pii] 10.1101/gr.109678.110

    PubMed  CAS  Google Scholar 

  54. Pelizzola M, Koga Y, Urban AE, Krauthammer M, Weissman S, Halaban R, Molinaro AM (2008) MEDME: an experimental and analytical methodology for the estimation of DNA methylation levels based on microarray derived MeDIP-enrichment. Genome Res 18(10):1652–1659. doi:gr.080721.108 [pii] 10.1101/gr.080721.108

    PubMed  CAS  Google Scholar 

  55. Brinkman AB, Simmer F, Ma K, Kaan A, Zhu J, Stunnenberg HG (2010) Whole-genome DNA methylation profiling using MethylCap-seq. Methods 52(3):232–236. doi:S1046-2023(10)00166-0 [pii] 10.1016/j.ymeth.2010.06.012

    PubMed  CAS  Google Scholar 

  56. Serre D, Lee BH, Ting AH (2010) MBD-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 38(2):391–399. doi:gkp992 [pii] 10.1093/nar/gkp992

    PubMed  CAS  Google Scholar 

  57. Lan X, Adams C, Landers M, Dudas M, Krissinger D, Marnellos G, Bonneville R, Xu M, Wang J, Huang TH, Meredith G, Jin VX (2011) High resolution detection and analysis of CpG dinucleotides methylation using MBD-Seq technology. PLoS One 6(7):e22226. doi:10.1371/journal.pone.0022226 PONE-D-11-02256 [pii]

    PubMed  CAS  Google Scholar 

  58. Zhou X, Maricque B, Xie M, Li D, Sundaram V, Martin EA, Koebbe BC, Nielsen C, Hirst M, Farnham P, Kuhn RM, Zhu J, Smirnov I, Kent WJ, Haussler D, Madden PA, Costello JF, Wang T (2011) The human epigenome browser at washington university. Nat Methods 8(12):989–990. doi:10.1038/nmeth.1772 nmeth.1772 [pii]

    PubMed  CAS  Google Scholar 

  59. Karpf AR, Peterson PW, Rawlins JT, Dalley BK, Yang Q, Albertsen H, Jones DA (1999) Inhibition of DNA methyltransferase stimulates the expression of signal transducer and activator of transcription 1, 2, and 3 genes in colon tumor cells. Proc Natl Acad Sci USA 96(24):14007–14012

    PubMed  CAS  Google Scholar 

  60. Yamashita K, Upadhyay S, Osada M, Hoque MO, Xiao Y, Mori M, Sato F, Meltzer SJ, Sidransky D (2002) Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer Cell 2(6):485–495. doi:S1535610802002155 [pii]

    PubMed  CAS  Google Scholar 

  61. Foltz G, Yoon JG, Lee H, Ryken TC, Sibenaller Z, Ehrich M, Hood L, Madan A (2009) DNA methyltransferase-mediated transcriptional silencing in malignant glioma: a combined whole-genome microarray and promoter array analysis. Oncogene. doi:onc2009122 [pii] 10.1038/onc.2009.122

    Google Scholar 

  62. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21(1):103–107

    PubMed  CAS  Google Scholar 

  63. Shames DS, Girard L, Gao B, Sato M, Lewis CM, Shivapurkar N, Jiang A, Perou CM, Kim YH, Pollack JR, Fong KM, Lam CL, Wong M, Shyr Y, Nanda R, Olopade OI, Gerald W, Euhus DM, Shay JW, Gazdar AF, Minna JD (2006) A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLoS Med 3(12):e486. doi:06-PLME-RA-0315R2 [pii] 10.1371/journal.pmed.0030486

    PubMed  Google Scholar 

  64. Gius D, Cui H, Bradbury CM, Cook J, Smart DK, Zhao S, Young L, Brandenburg SA, Hu Y, Bisht KS, Ho AS, Mattson D, Sun L, Munson PJ, Chuang EY, Mitchell JB, Feinberg AP (2004) Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach. Cancer Cell 6(4):361–371

    PubMed  CAS  Google Scholar 

  65. Mueller W, Nutt CL, Ehrich M, Riemenschneider MJ, von Deimling A, van den Boom D, Louis DN (2007) Downregulation of RUNX3 and TES by hypermethylation in glioblastoma. Oncogene 26(4):583–593. doi:1209805 [pii] 10.1038/sj.onc.1209805

    PubMed  CAS  Google Scholar 

  66. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33(18):5868–5877. doi:33/18/5868 [pii] 10.1093/nar/gki901

    PubMed  CAS  Google Scholar 

  67. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205):766–770. doi:nature07107 [pii] 10.1038/nature07107

    PubMed  CAS  Google Scholar 

  68. Smith ZD, Gu H, Bock C, Gnirke A, Meissner A (2009) High-throughput bisulfite sequencing in mammalian genomes. Methods 48(3):226–232. doi:S1046-2023(09)00111-X [pii] 10.1016/j.ymeth.2009.05.003

    PubMed  CAS  Google Scholar 

  69. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452(7184):215–219

    PubMed  CAS  Google Scholar 

  70. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133(3):523–536. doi:S0092-8674(08)00448-0 [pii] 10.1016/j.cell.2008.03.029

    PubMed  CAS  Google Scholar 

  71. Xi Y, Li W (2009) BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10:232. doi:1471-2105-10-232 [pii] 10.1186/1471-2105-10-232

    PubMed  Google Scholar 

  72. Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A (2011) Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 6(4):468–481. doi:nprot.2010.190 [pii] 10.1038/nprot.2010.190

    PubMed  CAS  Google Scholar 

  73. Xiang H, Zhu J, Chen Q, Dai F, Li X, Li M, Zhang H, Zhang G, Li D, Dong Y, Zhao L, Lin Y, Cheng D, Yu J, Sun J, Zhou X, Ma K, He Y, Zhao Y, Guo S, Ye M, Guo G, Li Y, Li R, Zhang X, Ma L, Kristiansen K, Guo Q, Jiang J, Beck S, Xia Q, Wang W, Wang J (2010) Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat Biotechnol 28(5):516–520. doi:nbt.1626 [pii] 10.1038/nbt.1626

    PubMed  CAS  Google Scholar 

  74. Schroeder DI, Lott P, Korf I, LaSalle JM (2011) Large-scale methylation domains mark a functional subset of neuronally expressed genes. Genome Res 21(10):1583–1591. doi:gr.119131.110 [pii] 10.1101/gr.119131.110

    PubMed  CAS  Google Scholar 

  75. Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, Ukomadu C, Sadler KC, Pradhan S, Pellegrini M, Jacobsen SE (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA 107(19):8689–8694. doi:1002720107 [pii] 10.1073/pnas.1002720107

    PubMed  CAS  Google Scholar 

  76. Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328(5980):916–919. doi:science.1186366 [pii] 10.1126/science.1186366

    PubMed  CAS  Google Scholar 

  77. Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Kin Sung KW, Rigoutsos I, Loring J, Wei CL (2010) Dynamic changes in the human methylome during differentiation. Genome Res 20(3):320–331. doi:gr.101907.109 [pii] 10.1101/gr.101907.109

    PubMed  CAS  Google Scholar 

  78. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73. doi:nature09798 [pii] 10.1038/nature09798

    PubMed  CAS  Google Scholar 

  79. Hon GC, Hawkins RD, Caballero OL, Lo C, Lister R, Pelizzola M, Valsesia A, Ye Z, Kuan S, Edsall LE, Camargo AA, Stevenson BJ, Ecker JR, Bafna V, Strausberg RL, Simpson AJ, Ren B (2011) Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res. doi:gr.125872.111 [pii] 10.1101/gr.125872.111

    Google Scholar 

  80. Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, Noushmehr H, Lange CP, van Dijk CM, Tollenaar RA, Van Den Berg D, Laird PW (2011) Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet 44(1):40–46. doi:10.1038/ng.969 ng.969 [pii]

    PubMed  Google Scholar 

  81. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27(11):1571–1572. doi:btr167 [pii] 10.1093/bioinformatics/btr167

    PubMed  CAS  Google Scholar 

  82. Xi Y, Bock C, Muller F, Sun D, Meissner A, Li W (2011) RRBSMAP: a fast, accurate and user-friendly alignment tool for reduced representation bisulfite sequencing. Bioinformatics. doi:btr668 [pii] 10.1093/bioinformatics/btr668

    Google Scholar 

  83. Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G, Cantor CR, Field JK, van den Boom D (2005) Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci USA 102(44):15785–15790. doi:0507816102 [pii] 10.1073/pnas.0507816102

    PubMed  CAS  Google Scholar 

  84. Raval A, Tanner SM, Byrd JC, Angerman EB, Perko JD, Chen SS, Hackanson B, Grever MR, Lucas DM, Matkovic JJ, Lin TS, Kipps TJ, Murray F, Weisenburger D, Sanger W, Lynch J, Watson P, Jansen M, Yoshinaga Y, Rosenquist R, de Jong PJ, Coggill P, Beck S, Lynch H, de la Chapelle A, Plass C (2007) Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 129(5):879–890. doi:S0092-8674(07)00512-0 [pii] 10.1016/j.cell.2007.03.043

    PubMed  CAS  Google Scholar 

  85. Deng J, Shoemaker R, Xie B, Gore A, LeProust EM, Antosiewicz-Bourget J, Egli D, Maherali N, Park IH, Yu J, Daley GQ, Eggan K, Hochedlinger K, Thomson J, Wang W, Gao Y, Zhang K (2009) Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol 27(4):353–360. doi:nbt.1530 [pii] 10.1038/nbt.1530

    PubMed  CAS  Google Scholar 

  86. Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466(7310):1129–1133. doi:nature09303 [pii] 10.1038/nature09303

    PubMed  CAS  Google Scholar 

  87. Ono R, Taki T, Taketani T, Taniwaki M, Kobayashi H, Hayashi Y (2002) LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res 62(14):4075–4080

    PubMed  CAS  Google Scholar 

  88. Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR (2003) TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17(3):637–641. doi:10.1038/sj.leu.2402834 [pii]

    PubMed  CAS  Google Scholar 

  89. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, Liu XS, Aravind L, Agarwal S, Maciejewski JP, Rao A (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468(7325):839–843. doi:nature09586 [pii] 10.1038/nature09586

    PubMed  CAS  Google Scholar 

  90. Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A (2010) The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 5(1):e8888. doi:10.1371/journal.pone.0008888

    PubMed  Google Scholar 

  91. Globisch D, Munzel M, Muller M, Michalakis S, Wagner M, Koch S, Bruckl T, Biel M, Carell T (2010) Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 5(12):e15367. doi:10.1371/journal.pone.0015367

    PubMed  CAS  Google Scholar 

  92. Szwagierczak A, Bultmann S, Schmidt CS, Spada F, Leonhardt H (2010) Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res 38(19):e181. doi:gkq684 [pii] 10.1093/nar/gkq684

    PubMed  Google Scholar 

  93. Kinney SM, Chin HG, Vaisvila R, Bitinaite J, Zheng Y, Esteve PO, Feng S, Stroud H, Jacobsen SE, Pradhan S (2011) Tissue-specific distribution and dynamic changes of 5-hydroxymethylcytosine in mammalian genomes. J Biol Chem 286(28):24685–24693. doi:M110.217083 [pii] 10.1074/jbc.M110.217083

    PubMed  CAS  Google Scholar 

  94. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7(6):461–465. doi:nmeth.1459 [pii] 10.1038/nmeth.1459

    PubMed  CAS  Google Scholar 

  95. Ke X-S, Qu Y, Rostad K, Li W-C, Lin B, Halvorsen OJ, Haukaas SA, Jonassen I, Petersen K, Goldfinger N, Rotter V, Akslen LA, Oyan AM, Kalland K-H (2009) Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis. PLoS One 4:e4687

    PubMed  Google Scholar 

  96. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Pérez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400

    PubMed  CAS  Google Scholar 

  97. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RGAB, Otte AP, Rubin MA, Chinnaiyan AM (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    PubMed  CAS  Google Scholar 

  98. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, McDermott U, Azizian N, Zou L, Fischbach MA (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80

    PubMed  CAS  Google Scholar 

  99. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    PubMed  CAS  Google Scholar 

  100. O’Neill LP, Turner BM, Turner B (2003) ChIP with native chromatin: advantages and problems relative to methods using cross-linked material. Methods 31(1):76–82

    Google Scholar 

  101. Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25:99–104

    PubMed  CAS  Google Scholar 

  102. Barski A, Zhao K (2009) Genomic location analysis by ChIP-Seq. J Cell Biochem 107(107):11–18

    PubMed  CAS  Google Scholar 

  103. Dingwall C, Lomonossoff GP, Laskey RA (1981) High sequence specificity of micrococcal nuclease. Nucleic Acids Res 9:2659–2673

    PubMed  CAS  Google Scholar 

  104. Hörz W, Altenburger W (1981) Sequence specific cleavage of DNA by micrococcal nuclease. Nucleic Acids Res 9:2643–2658

    PubMed  Google Scholar 

  105. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18:1851–1858

    PubMed  CAS  Google Scholar 

  106. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    PubMed  Google Scholar 

  107. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    PubMed  Google Scholar 

  108. Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    PubMed  CAS  Google Scholar 

  109. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    PubMed  CAS  Google Scholar 

  110. Coarfa C, Yu F, Miller CA, Chen Z, Harris RA, Milosavljevic A (2010) Pash 3.0: a versatile software package for read mapping and integrative analysis of genomic and epigenomic variation using massively parallel DNA sequencing. BMC Bioinformatics 11:572. doi:1471-2105-11-572 [pii] 10.1186/1471-2105-11-572

    PubMed  Google Scholar 

  111. Pepke S, Wold B, Mortazavi A (2009) Computation for ChIP-seq and RNA-seq studies. Nat Methods 6:S22–S32

    PubMed  CAS  Google Scholar 

  112. Xu H, Handoko L, Wei X, Ye C, Sheng J, Wei C-L, Lin F, Sung W-K (2010) A signal-noise model for significance analysis of ChIP-seq with negative control. Bioinformatics 26:1199–1204

    PubMed  CAS  Google Scholar 

  113. Xu H, Wei C-L, Lin F, Sung W-K (2008) An HMM approach to genome-wide identification of differential histone modification sites from ChIP-seq data. Bioinformatics 24:2344–2349

    PubMed  CAS  Google Scholar 

  114. Zang C, Schones DE, Zeng C, Cui K, Zhao K, Peng W (2009) A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25:1952–1958

    PubMed  CAS  Google Scholar 

  115. Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    PubMed  CAS  Google Scholar 

  116. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    PubMed  CAS  Google Scholar 

  117. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim T-K, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    PubMed  CAS  Google Scholar 

  118. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318

    PubMed  CAS  Google Scholar 

  119. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, Ching KA, Antosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart R, Thomson JA, Crawford GE, Kellis M, Ren B (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:108–112

    PubMed  CAS  Google Scholar 

  120. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49

    PubMed  CAS  Google Scholar 

  121. Wasserman NF, Aneas I, Nobrega MA (2010) An 8q24 gene desert variant associated with prostate cancer risk confers differential in vivo activity to a MYC enhancer. Genome Res 20:1191–1197

    PubMed  CAS  Google Scholar 

  122. Adli M, Bernstein BE (2011) Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq. Nat Protoc 6:1656–1668

    PubMed  CAS  Google Scholar 

  123. Goren A, Ozsolak F, Shoresh N, Ku M, Adli M, Hart C, Gymrek M, Zuk O, Regev A, Milos PM, Bernstein BE (2010) Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nat Methods 7:47–49

    PubMed  CAS  Google Scholar 

  124. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311

    PubMed  CAS  Google Scholar 

  125. Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu KS, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38:1341–1347

    PubMed  CAS  Google Scholar 

  126. Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, Rubio ED, Krumm A, Lamb J, Nusbaum C, Green RD, Dekker J (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16:1299–1309

    PubMed  CAS  Google Scholar 

  127. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    PubMed  CAS  Google Scholar 

  128. Cai S, Lee CC, Kohwi-Shigematsu T (2006) SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet 38:1278–1288

    PubMed  CAS  Google Scholar 

  129. Simonis M, Kooren J, de Laat W (2007) An evaluation of 3C-based methods to capture DNA interactions. Nat Methods 4:895–901

    PubMed  CAS  Google Scholar 

  130. Fullwood MJ, Wei C-L, Liu ET, Ruan Y (2009) Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res 19:521–532

    PubMed  CAS  Google Scholar 

  131. Simonis M, Klous P, Homminga I, Galjaard R-J, Rijkers E-J, Grosveld F, Meijerink JPP, de Laat W (2009) High-resolution identification of balanced and complex chromosomal rearrangements by 4C technology. Nat Methods 6:837–842

    PubMed  CAS  Google Scholar 

  132. Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W, Berman DM, Jenuwein T, Pruitt K, Sharkis SJ, Watkins DN, Herman JG, Baylin SB (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39(2):237–242. doi:ng1972 [pii] 10.1038/ng1972

    PubMed  CAS  Google Scholar 

  133. Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I, Laird PW (2007) Epigenetic stem cell signature in cancer. Nat Genet 39(2):157–158. doi:ng1941 [pii] 10.1038/ng1941

    PubMed  CAS  Google Scholar 

  134. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE, Bergman Y, Simon I, Cedar H (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39(2):232–236. doi:ng1950 [pii] 10.1038/ng1950

    PubMed  CAS  Google Scholar 

  135. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS, Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O’Laughlin M, McMichael JF, Delehaunty KD, McGrath SD, Fulton LA, Magrini VJ, Vickery TL, Hundal J, Cook LL, Conyers JJ, Swift GW, Reed JP, Alldredge PA, Wylie T, Walker J, Kalicki J, Watson MA, Heath S, Shannon WD, Varghese N, Nagarajan R, Westervelt P, Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Wilson RK (2010) DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363(25):2424–2433. doi:10.1056/NEJMoa1005143

    PubMed  CAS  Google Scholar 

  136. Yamashita Y, Yuan J, Suetake I, Suzuki H, Ishikawa Y, Choi YL, Ueno T, Soda M, Hamada T, Haruta H, Takada S, Miyazaki Y, Kiyoi H, Ito E, Naoe T, Tomonaga M, Toyota M, Tajima S, Iwama A, Mano H (2010) Array-based genomic resequencing of human leukemia. Oncogene 29(25):3723–3731. doi:onc2010117 [pii] 10.1038/onc.2010.117

    PubMed  CAS  Google Scholar 

  137. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270. doi:nnano.2009.12 [pii] 10.1038/nnano.2009.12

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph F. Costello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nagarajan, R.P., Fouse, S.D., Bell, R.J.A., Costello, J.F. (2013). Methods for Cancer Epigenome Analysis. In: Karpf, A. (eds) Epigenetic Alterations in Oncogenesis. Advances in Experimental Medicine and Biology, vol 754. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9967-2_15

Download citation

Publish with us

Policies and ethics