Skip to main content

Finding Gliders in Cellular Automata

  • Chapter
Collision-Based Computing

Abstract

Gliders, or localized propagating structures, play a role of autonomous signals in cellular-automata models of collision-based computing devices. A method is described for automatically classifying cellular automata rules for a spectrum of ordered, complex and chaotic dynamics, and thus identify rules that support interacting gliders. This is achieved by a measure of the variance of input-entropy over time. The distribution of rule classes in rule-space is discovered. The method also allows automatic “filtering” of cellular automata space-time patterns to show up gliders and related emergent configurations more clearly. Cellular automata dynamics is shown to exhibit some approximate correlations with global measures on convergence in attractor basins, characterized by the distribution of in-degree sizes in their branching structure, and to the rule parameter Z. The research is based on computer experiments using the software Discrete Dynamics Lab (DDLab) [26]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky A. Identification of Cellular Automata (Taylor (4z Francis, 1994).

    MATH  Google Scholar 

  2. Aizawa Y., Nishikawa I. and Kaneko K. Soliton turbulence in one-dimensional cellular automata Physica D 45 (1990) 307–327.

    Article  MATH  Google Scholar 

  3. Conway J.H. What is Life? In: Berlekamp E., Conway J.H. and Guy R., EditorsWinning Ways for Your Mathematical Plays,Vol. 2, Chap. 25 (Academic Press, New York, 1982)

    Google Scholar 

  4. Cook M., talk presented at the Cellular Automata meeting, Santa Fe Institute, 1998. To be published in A New Kind of Science by S. Wolfram

    Google Scholar 

  5. Crutchfield J.P. and Hanson J.E. Turbulent pattern bases for cellular automata Physica D69 (1993) 279–301

    Article  MathSciNet  MATH  Google Scholar 

  6. Domain C. and Gutowitz H.A. The topological skeleton of cellular automaton dynamics Physica D103 (1997) 155–168

    Article  MathSciNet  MATH  Google Scholar 

  7. Gutowitz H.A., Editor Cellular Automata, Theory and Experiment (MIT Press, 1991)

    Google Scholar 

  8. Gutowitz H.A. and Langton C.G. Mean field theory of the edge of chaos, In:Proceedings of ECAL3(Springer, 1995)

    Google Scholar 

  9. Hanson J.E. and Crutchfield J.P. Computational mechanics of cellular automata, an example Physica D103 (1997) 169–189

    Article  MathSciNet  MATH  Google Scholar 

  10. Langton C.G. Studying artificial life with cellular automata Physica D 22 (1986) 120–149

    Article  MathSciNet  Google Scholar 

  11. Langton C.G. Computation at the edge of chaosPhysica D 42 (1990) 12–37

    Article  MathSciNet  Google Scholar 

  12. Prigogine I. and Stengers IOrder out of Chaos(Heinemann, 1984)

    Google Scholar 

  13. Turing A.M. Computing machinery and intelligenceMind59 (1950) 433–460

    Article  MathSciNet  Google Scholar 

  14. Toffoli T. and Margolus NCellular Automata Machines (MIT Press, 1987)

    Google Scholar 

  15. von Neuman J. Theory of Self Reproducing Automata edited and completed by A.W. Burks (University of Illinois Press, 1966).

    Google Scholar 

  16. Voorhees B. Computational Analysis of One-Dimensional Cellular Automata(World Scientific, 1996)

    MATH  Google Scholar 

  17. Walker C.C. and Ashby W.R. On the temporal characteristics of behavior in certain complex systems Kybernetik 3 (1966) 100–108

    Article  Google Scholar 

  18. Wolfram S. Statistical mechanics of cellular automataReviews of Modern Physics55 (1983) 601–664

    Article  MathSciNet  MATH  Google Scholar 

  19. Wolfram S. Computation theory of cellular automata Commun. Maths. Phys96 (1984) 15–57

    Article  MathSciNet  MATH  Google Scholar 

  20. Wolfram S. Universality and complexity in cellular automata, Physica D10 (1984) 1–35

    Article  MathSciNet  Google Scholar 

  21. Wolfram S., Editor Theory and Application of Cellular Automata(World Scientific, 1986)

    Google Scholar 

  22. Wuensche A. and Lesser M.J.The Global Dynamics of Cellular Automata (Santa Fe Institute Studies in the Sciences of Complexity, Addison-Wesley, 1992)

    MATH  Google Scholar 

  23. Wuensche A. Complexity in one-dimensional cellular automata Santa Fe Institute Working Paper 94–04-025 (1994)

    Google Scholar 

  24. Wuensche A. Attractor Basins of Discrete NetworksD Phil Thesis, Cognitive Science Research Paper 461 (Univ. of Sussex, 1997)

    Google Scholar 

  25. Wuensche A. Classifying cellular automata automatically Complexity 4 (1999) 47–66

    Article  MathSciNet  Google Scholar 

  26. Wuensche A. Discrete Dynamics Lab (DDLab)andThe DDLab Manual www.ddlabcornand and www.santafe.edu/~wuensch/ddlab.html 2001

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London

About this chapter

Cite this chapter

Wuensche, A. (2002). Finding Gliders in Cellular Automata. In: Adamatzky, A. (eds) Collision-Based Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0129-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0129-1_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-540-3

  • Online ISBN: 978-1-4471-0129-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics