Skip to main content

On Synaptic Plasticity: Modelling Molecular Kinases involved in Transmitter Release

  • Conference paper
Artificial Neural Networks in Medicine and Biology

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

  • 240 Accesses

Abstract

The neurotransmitter release depends, in principal, on two neuronal events. One is the influx of Calcium in the active zone due to polarization, and the other is the amount of fusion available neurotransmitter vesicles. We state a model of the phosphorylation of the Synapsins (I and II), which creates a pool of fusion available vesicles. The exocytosis of vesicles is stated by Calcium on and off rates, modelling the complex of the fusion pore. The aim here is to model paired pulse facilitation due to phosphorylation of the Synapsins, and post-tetanic potentiation due to increased kinetic activity of the cAMP complex. In addition we show that the regulation of fusion competent vesicles in post-tetanic potentiation is highly correlated to Calcium residues released by organelles, i.e Calcium buffering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.D. Camilli, F. Benfenati, F. Valtorta, and P. Greengard. The Synapsins. Annual Review of Cell and Developmental Biology, 6:433–460, 1990.

    Article  Google Scholar 

  2. D. Chin, K.E. Winkler, and A.R. Means. Characterization of substrate phosphorylation and use of calmodulin mutants to address implications from the enzyme crystal structure of calmodulin-dependent protein kinase I. Journal of Biological Chemistry, 272(50):31235–31240, 1997.

    Article  Google Scholar 

  3. R. Heidelberger, C. Heinemann, E. Neher, and G. Matthews. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature, 371:513–515, 1994.

    Article  Google Scholar 

  4. H.C. Hemmings, A.C. Nairn, T.L. McGuinnes, R.L. Huganir, and P. Greengard. Role of protein phosphorylation in neuronal signaling transduction. FASEB, 3:1583–1592, 1989.

    Google Scholar 

  5. B. Katz. Neural Transmitter Release: from quantal secretion to exocytosis and beyond. Journal of Neurocytology, 25:677–686, 1996.

    Article  Google Scholar 

  6. F. Kawasaki and H. Kita. Two Excitatory Motorneurons Differ in Quantal Content of Their Junctional Potentials in Abdominal Muscle Fibres of the Cricket, Gryllus bimaculatus. Journal of Insect Physiology, 43(2): 167–177, 1997.

    Article  Google Scholar 

  7. M.B. Kennedy, T. McGuinness, and P. Greengard. A Calcium/Calmodulin-dependent protein kinase from mammalian brain that phosphorylates synapsin I: partial purification and characterization. Journal of Neuroscience, 3(4):818–831, 1983.

    Google Scholar 

  8. R. Köt ter, D. Schirok, and K. Zilles. Concerted regulation of cyclic AMP by calcium, calmodulin, and dopamine: A kinetic modelling approach. In R. Paton, editor, Information Processing in Cells and Tissues (IPCAT), pages 199–210. Liverpool: Univ. of Liverpool, 1995.

    Google Scholar 

  9. R. Llinas, T.L. McGuinnes, C.S. Leonard, M. Sugimori, and P. Greengard. Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proceedings of the National Academy of Sciences of USA, 82:3035–3039, 1985.

    Article  Google Scholar 

  10. T.F.J. Martin. Stages of regulated exocytosis. Trends in Cell Biology, 7:271–276, 1997.

    Article  Google Scholar 

  11. A.C. Nairn, H.C. Hemmings, and P. Greengard. Protein Kinasis in the Brain. Annual Review of Biochemistry, 54:931–976, 1985.

    Article  Google Scholar 

  12. E.J. Nestler and P. Greengard. Protein Phophorylation in the Nervous System. New York: Wiley, 1984.

    Google Scholar 

  13. B.J. Nichols and H.R.B. Pelham. SNAREs and Membrane Fusion in the Golgi Apparatus. Biochimica et Biophysica Acta, 1404:9–31, 1998.

    Article  Google Scholar 

  14. R.B. Pearson, S. Forrest, M. Davis, T.J. Martin, and B.E. Kemp. Comparison of substrate specificity of myosin kinase and cyclic AMP-dependent protein kinase. Biochim Biophys Acta, 786(3):261–266, 1984.

    Article  Google Scholar 

  15. T.W. Rosahl, M. Geppert, D. Spillane, J. Herz, R.E. Hammer, R.C. Malenka, and T. Südhof. Short-Term Synaptic Plasticity Is Altered in Mice Lacking Synapsin I. Cell, 75:661–670, 1993.

    Article  Google Scholar 

  16. T.W. Rosahl, D. Spillane, M. Missler, J. Herz D.K. Selig, J.R. Wolff, R.E. Hammer, R.C. Malenka, and T. Südhof. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature, 375:488–493, 1995.

    Article  Google Scholar 

  17. J.L. Stow and Kirsten Heinmann. Vesicle budding on Golgi membranes: regulation by G proteins and myosin motors. Biochimica et Biophysica Acta, 1404:161–171, 1998.

    Article  Google Scholar 

  18. W.M. Yamada, C. Koch, and P.R. Adams. Multiple Channels and Calcium Dynamics. In C. Koch and I. Segev, editors, Methods in Neuronal Modeling, pages 97–133. Cambridge, Massachusetts: MIT Press, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this paper

Cite this paper

Lundh, D., Narayanan, A. (2000). On Synaptic Plasticity: Modelling Molecular Kinases involved in Transmitter Release. In: Malmgren, H., Borga, M., Niklasson, L. (eds) Artificial Neural Networks in Medicine and Biology. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0513-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0513-8_42

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-289-1

  • Online ISBN: 978-1-4471-0513-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics