Skip to main content

Neural Computation in Medicine: Perspectives and Prospects

  • Conference paper
Artificial Neural Networks in Medicine and Biology

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

Abstract

In 1998, over 400 papers on artificial neural networks (ANNs) were published in the context of medicine, but why is there this interest in ANNs? And how do ANNs compare with traditional statistical methods? We propose some answers to these questions, and go on to consider the ‘black box’ issue. Finally, we briefly look at two directions in which ANNs are likely to develop, namely the use of Bayesian statistics and knowledge-data fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Aakerlund and R. Hemmingsen. Neural networks as models of psychopathology. Biological Psychiatry, 43 (7):471–482, 1998.

    Article  Google Scholar 

  2. W.W. Tryon. A neural network explanation of posttraumatic stress. Journal of Anxiety Disorders, 12 (4):373–385, 1998.

    Article  Google Scholar 

  3. C.A. Galletly, C.R. Clark, and A.C. McFarlane. Artificial neural networks: a prospective tool for the analysis of psychiatric disorders. Journal of Psychiatry & Neuroscience, 21 (4):239–247, 1996.

    Google Scholar 

  4. R. Dybowski and V. Gant. Artificial neural networks in pathology and medical laboratories. Lancet, 346:1203–1207, 1995.

    Article  Google Scholar 

  5. J.T. Wei, Z. Zhang, S.D. Barnhill, K.R. Madyastha, H. Zhang, and J.E. Oesterling. Understanding artificial neural networks and exploring their potential applications for the practicing urologist. Urology, 52 (2):161–172, 1998.

    Article  Google Scholar 

  6. W. Deredy. Pattern recognition approaches in biomedical and clinical magnetic resonance spectroscopy: A review. NMR in Biomedicine, 10 (3):99–124, 1997.

    Article  Google Scholar 

  7. A. Tewari. Artificial intelligence and neural networks: Concept, applications and future in urology. British Journal of Urology, 80Supplement 3:53–58, 1997.

    MathSciNet  Google Scholar 

  8. J.P. Hogge, D.S. Artz, and M.T. Preedman. Update in digital mammography. Critical Reviews in Diagnostic Imaging, 38 (1):89–113, 1997.

    Google Scholar 

  9. P.Y. Ktonas. Computer-based recognition of EEG patterns. Electroencephalography & Clinical Neurophysiology — Supplement, 45:23–35, 1996.

    Google Scholar 

  10. W. Penny and D. Frost. Neural networks in clinical medicine. Medical Decision Making, 16 (4):386–389, 1996.

    Article  Google Scholar 

  11. D. Itchhaporia, P.B. Snow, R.J. Almassy, and W.J. Oetgen. Artificial neural networks: Current status in cardiovascular medicine. Journal of the American College of Cardiology, 28 (2):515–521, 1996.

    Article  Google Scholar 

  12. R.N. Naguib and G.V. Sherbet. Artificial neural networks in cancer research. Pathobiology, 65 (3):129–139, 1997.

    Article  Google Scholar 

  13. M.R. Brickley, J.P. Shepherd, and R.A. Armstrong. Neural networks: A new technique for development of decision support systems in dentistry. Journal of Dentistry, 26 (4):305–309, 1998.

    Article  Google Scholar 

  14. R. Goodacre, M.J. Neal, and D.B. Kell. Quantitative analysis of multivariate data using artificial neural networks: A tutorial review and applications to the deconvolution of pyrolysis mass spectra. Zentralblatt fur Bakteriologie, 284 (4):516–539, 1996.

    Article  Google Scholar 

  15. C. Robert, C. Guilpin, and A. Limoge. Review of neural network applications in sleep research. Journal of Neuroscience Methods, 79 (2): 187–193, 1998.

    Article  Google Scholar 

  16. L. Tarassenko. A Guide to Neural Computing Applications. Arnold, London, 1998.

    Google Scholar 

  17. J.S. Bridle. Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In F. Fogleman-Soulie and J. Herault, editors, Neurocomputing: Algorithms, Architectures, and Applications, pages 227–236. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  18. B.D. Ripley. Statistical aspects of neural networks. In O.E. Barndorff-Nielsen, J.L. Jensen, and W.S. Kendell, editors, Networks and Chaos — Statistical and Probabilistic Aspects, pages 40–123. Chapman & Hall, London, 1993.

    Google Scholar 

  19. S.-I. Amari. Mathematical methods of neurocomputing. In O.E. Barndorff-Nielsen, J.L. Jensen, and W.S. Kendell, editors, Networks and Chaos — Statistical and Probabilistic Aspects, pages 1–39. Chapman & Hall, London, 1993.

    Google Scholar 

  20. B. Cheng and D.M. Titterington. Neural networks: A review from a statistical perspective. Statistical Science, 9:2–54, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  21. B.D. Ripley and R.M. Ripley. Neural networks as statistical methods in survival analysis. In R. Dybowski and V. Gant, editors, Clinical Applications of Artificial Neural Networks, chapter 9. Cambridge University Press, Cambridge. In press.

    Google Scholar 

  22. B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  23. S. Haykin. Neural Networks: A Comprehensive Foundation. Macmillan, New York, 1994.

    MATH  Google Scholar 

  24. C.M. Bishop, M. Svensen, and C.K.I. Williams. GTM: the generative topographic mapping. Neural Computation, 10 (1):215–234, 1997.

    Article  Google Scholar 

  25. D.J.C. MacKay. A practical Bayesian framework for back-propagation networks. Neural Computation, 4 (3):448–472, 1992.

    Article  Google Scholar 

  26. A. Flexer. Connectionists and statisticians, friends or foes? In J. Mira and F. Sandoval, editors, Proceedings of the International Workshop on Artificial Neural Networks, LNCS 930, pages 454–461. Springer, 1995.

    Google Scholar 

  27. P.H. Goodman and F.E. Harrell. Neural networks: Advantages and limitations for biostatistical modelling. Technical report, Washoe Medical Center, University of Nevada, October 1998.

    Google Scholar 

  28. L. Tarassenko. Neural networks. Lancet, 346:1712, 1995.

    Google Scholar 

  29. L. Tarassenko, P. Hayton, N. Cerneaz, and M. Brady. Novelty detection for the identification of masses in mammograms. In Proceedings of the 4th IEE International Conference on Artificial Neural Networks, pages 442–447, Cambridge, 1995. Cambrdige Univeristy Press.

    Google Scholar 

  30. J. Wyatt. Nervous about artificial neural networks? The Lancet, 346:1175–1177, 1995.

    Article  Google Scholar 

  31. D. Michie, D.J. Spiegelhalter, and C.C. Taylor, editors. Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York, 1994.

    MATH  Google Scholar 

  32. T. Kohonen. Self-organizing formation of topologically correct feature maps. Biological Cybernetics, 43:59–69, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory of Neural Computation. Addison-Wesley, Reading, MA, 1991.

    Google Scholar 

  34. C.J. Lux, A. Stellzig, D. Volz, W. Jager, A. Richardson, and G. Komposch. A neural network approach to the analysis and classification of human craniofacial growth. Growth, Development, & Aging, 62 (3):95–106, 1998.

    Google Scholar 

  35. C.I. Christodoulou and C.S. Pattichis. Unsupervised pattern recognition for the classification of EMG signals. IEEE Transactions on Biomedical Engineering, 46 (2)}:169–178, 1999.

    Article  Google Scholar 

  36. J.O. Glass and W.E. Reddick. Hybrid artificial neural network segmentation and classification of dynamic contrast-enhanced MR imaging (DEMRI) of osteosarcoma. Magnetic Resonance Imaging, 16(9): 1075–1083, 1998.

    Article  Google Scholar 

  37. B. Fritzke. Growing cell structures — a self-organising network for unsupervised and supervised learning. Neural Networks, 7:1441–1460, 1994.

    Article  Google Scholar 

  38. A.J. Walker, S.S. Cross, and R.F. Harrison. Visualisation of biomedical datasets by use of growing cell structure networks: A novel diagnostic classification technique. Lancet, 354:1518–1521, 1999.

    Article  Google Scholar 

  39. C.M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.

    Google Scholar 

  40. P.V. Balakrishnan, M.C. Cooper, V.S. Jacob, and P.A. Lewis. A study of the classification capabilites of neural networks using unsupervised learning: A comparison with k-means clustering. Psychometrika, 59:509–525, 1994.

    Article  MATH  Google Scholar 

  41. J. Moody and C. Darken. Fast learning in networks of locally-tuned processing units. Neural Computation, 1:281–294, 1989.

    Article  Google Scholar 

  42. A. Bezerianos, S. Papadimitriou, and D. Alexopoulos. Radial basis function neural networks for the characterization of heart rate variability dynamics. Artificial Intelligence in Medicine, 15(3):215–234, 1999.

    Article  Google Scholar 

  43. K. Turner, N. Ramanujam, J. Ghosh, and R. Richards-Kortum. Ensembles of radial basis function networks for spectroscopic detection of cervical precancer. IEEE Transactions on Biomedical Engineering, 45(8):953–961, 1998.

    Article  Google Scholar 

  44. R. Goodacre, E.M. Timmins, R. Burton, N. Kaderbhai, A.M. Woodward D.B. Kell, and P.J. Rooney. Rapid identification of urinary tract infection bacteria using hyperspectral whole—organism fingerprinting and artificial neural networks. Microbiology, 144(5):1157–1170, 1998.

    Article  Google Scholar 

  45. J.B. Bishop, M. Szpalski, and S.K. Ananthraman D.R. McIntyre M.H. Pope. Classification of low back pain from dynamic motion characteristics using an artificial neural network. Spine, 22(24):2991–2998, 1997.

    Article  Google Scholar 

  46. R. Dybowski. Classification of incomplete feature vectors by radial basis function networks. Pattern Recognition Letters, 19:1257–1264, 1998.

    Article  MATH  Google Scholar 

  47. I.T. Nabney. Efficient training of RBF networks for classification. Technical report NCRG/99/002, Neural Computing Research Group, Aston University, 1999.

    Google Scholar 

  48. G.A. Carpenter and S. Grossberg. A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics, and Image Processing, 37:54–115, 1987.

    Article  MATH  Google Scholar 

  49. M. Caudill and C. Butler. Naturally Intelligent Systems. MIT Press, Cambridge, MA, 1990.

    Google Scholar 

  50. R.G. Spencer, C.S. Lessard, F. Davila, and B. Etter. Self-organising discovery, recognition and prediction of haemodynamic patterns in the intensive care unit. Medical & Biological Engineering & Computing, 35(2): 117–123, 1997.

    Article  Google Scholar 

  51. G. Carpenter, S. Grossberg, and J. Reynolds. ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network. Neural Networks, 4:565–588, 1991.

    Article  Google Scholar 

  52. R.F. Harrison, S.S. Cross, R.L. Kennedy, C.P. Lim, and J. Downs. Adaptive resonance theory: A foundation for ‘apprentice’ systems in clinical decision support? In R. Dybowski and V. Gant, editors, Clinical Applications of Artificial Neural Networks, chapter 13. Cambridge University Press, Cambridge. In press.

    Google Scholar 

  53. S. Grossberg. Adaptive pattern classification and universal recording: I. parallel development and coding of neural feature detectors. Cybernetics, 23:121–134, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  54. B. Moore. ART1 and pattern clustering. In D. Touretzky, G. Hinton, and T. Sejnowski, editors, Proceedings of the 1988 Connectionist Models Summer School, pages 174–185, Sa Mateo, CA, 1989. Morgan Kaufmann.

    Google Scholar 

  55. D.J. Hall and D. Khanna. The ISODATA method of computation for relative perception of similarities and differences in complex and real computers. In K. Enslein, A. Ralston, and H.S. Wilf, editors, Statistical Methods for Digital Computers, pages 340–373. Wiley, New York, 1977.

    Google Scholar 

  56. D. Sharp. From “black-box” to bedside, one day? The Lancet, 346:1050, 1995.

    Article  Google Scholar 

  57. R.A. Kemp, C. MacAulay, and B. Palcic. Opening the black box: the relationship between neural networks and linear discriminant functions. Analytical Cellular Pathology. 14(1):19–30, 1997, 14(1):19-30, 1997.

    Google Scholar 

  58. R. Andrews, A.B. Tickle, and J. Diederich. A review of techniques for extracting rules from trained artificial neural networks. In R. Dybowski and V. Gant, editors, Clinical Applications of Artificial Neural Networks, chapter 12. Cambridge University Press, Cambridge. In press.

    Google Scholar 

  59. D. Nauck, F. Klawonn, and R. Kruse. Foundations of Neuro-Fuzzy Systems. John Wiley, Chichester, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this paper

Cite this paper

Dybowski, R. (2000). Neural Computation in Medicine: Perspectives and Prospects. In: Malmgren, H., Borga, M., Niklasson, L. (eds) Artificial Neural Networks in Medicine and Biology. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0513-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0513-8_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-289-1

  • Online ISBN: 978-1-4471-0513-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics