Skip to main content

The Autonomic Control of Ventricular Rate in Atrial Fibrillation

  • Chapter
Atrial Fibrillation

Abstract

Regulation of the heart rate is just one of many control mechanisms that operate to ensure that haemodynamic needs are met. In sinus rhythm, heart rate is controlled by the action of the autonomic nerves on the sinoatrial node, by the prevailing level of catecholamines, and by other factors such as body temperature. Of the mechanisms regulating heart rate, the baroceptor-heart rate reflex has been particularly well studied, mainly perhaps because of its accessibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aberg H, Strom G, Werner I (1972a) Heart rate during exercise in patients with atrial fibrillation. Acta Med Scand 191: 315–20

    PubMed  CAS  Google Scholar 

  • Bainbridge FA (1915). The influence of venous filling upon the rate of the heart. J Physiol 50: 65–84

    PubMed  CAS  Google Scholar 

  • Bainbridge FA (1920) The relation between respiration and the pulse-rate. J Physiol 54: 192–202

    PubMed  CAS  Google Scholar 

  • Balsano FA, Salerno LA, Musca AL, Pitucco GA (1967) The different influence of the right and of the left vagus upon atrial fibrillation. Experimental and clinical research. Cardiologia 50: 84–94

    Article  PubMed  CAS  Google Scholar 

  • Bassan MM (1980) Branham’s sign and atrial fibrillation [letter] Am Heart J 100: 411–12

    Article  PubMed  CAS  Google Scholar 

  • Beasley R, Smith DA, McHaffie DJ (1985) Exercise heart rate at different serum digoxin concentrations in patients with atrial fibrillation. Br Med J 290: 9–11

    Article  CAS  Google Scholar 

  • Bellet S (1971) Clinical disorders of the heart beat. 3rd edn. Lea & Febiger, Philadelphia

    Google Scholar 

  • Bleecker ET, Engel BT (1973) Learned control of ventricular rate in patients with atrial fibrillation. Psychosom Med 35: 161–75

    PubMed  CAS  Google Scholar 

  • Borst C, Karemaker JM (1980) Respiratory modulation of reflex bradycardia evoked by brief carotid sinus nerve stimulation: additive rather than gating mechanism. In: Sleight P (ed) Arterial baroreceptors and hypertension. Oxford University Press, Oxford, pp 276–81

    Google Scholar 

  • Borst C, Karemaker JM (1983) Time delays in the human baroreceptor reflex. J Auton Nerv Syst 9: 399–409

    Article  PubMed  CAS  Google Scholar 

  • Borst C, Meijler FL (1984) Baroreflex modulation of ventricular rhythm in atrial fibrillation. European Heart Journal 5: 870–5

    PubMed  CAS  Google Scholar 

  • Brooks CMcC, Lu HH, Lange G, Mangi R, Shaw RB, Geoly K (1966) Effects of localised stretch of the sinoatrial node region of the dog heart. Am J Physiol 211: 1197–202

    PubMed  CAS  Google Scholar 

  • Channer KS, Papouchado M, James MA, Pitcher DW, Rees JR (1987) Towards improved control of atrial fibrillation. Eur Heart J 8: 141–7

    PubMed  CAS  Google Scholar 

  • Chess GF, Calaresu FR (1971) Frequency response model of vagal control of heart rate in the cat. Am J Physiol 220: 554–7

    PubMed  CAS  Google Scholar 

  • Cowie MR, Rawles JM (1989) A modified method of quantifying the carotid baroreceptor-heart rate reflex in man: the effect of age and blood pressure. Clin Sei 77: 223–228

    CAS  Google Scholar 

  • Davidson NS, Goldner S, McCloskey DI (1976) Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart rate and cardiac vagal efferent nerve activity. J Physiol 259: 523–530

    PubMed  CAS  Google Scholar 

  • Eckberg DL (1977a) Baroreflex inhibition of the human sinus node: importance of stimulus intensity, duration, and rate of pressure change. J Physiol 269: 561–77

    PubMed  CAS  Google Scholar 

  • Eckberg DL (1977b) Adaptation of the human carotid baroreceptor- cardiac reflex. J Physiol 269: 579–80

    PubMed  CAS  Google Scholar 

  • Eckberg DL (1983) Human sinus arrhythmia as an index of vagal cardiac outflow. J Appl Physiol 54: 961–6

    PubMed  CAS  Google Scholar 

  • Eckberg DL, Eckberg MJ (1982) Human sinus node responses to repetitive, ramped carotid baroreceptor stimuli. Am J Physiol 242: H638–44

    PubMed  CAS  Google Scholar 

  • Eckberg DL, Orshan CR (1977) Respiratory and baroreceptor reflex interactions in man. J Clin Invest 59: 780–85

    Article  PubMed  CAS  Google Scholar 

  • Eckberg DL, Cavanagh MS, Mark AL, Abboud FM (1975) A simplified neck-suction device for activation of carotid baroreceptors. J Lab Clin Med 85: 167–73

    PubMed  CAS  Google Scholar 

  • Ewing DJ, Clarke BF (1982) Diagnosis and management of diabetic autonomic neuropathy. Br Med J 285: 916–18

    Article  CAS  Google Scholar 

  • Eyster JAE (1906) Clinical and experimental observations upon Cheyne-Stokes respiration. J Exper Med 8: 565–613

    Article  CAS  Google Scholar 

  • Flowers NC, Dawson JE, Horan LG (1972) Modification of the ventricular response in atrial fibrillation during Cheyne-Stokes breathing: a possible source of therapeutic error. J Tenn Med Assoc 65: 804–8

    PubMed  CAS  Google Scholar 

  • Glass L, Mackay MC (1979) Pathological conditions resulting from instabilities in physiological control systems. Ann N Y Acad Sei 316: 214

    Article  CAS  Google Scholar 

  • Grodins FS (1963) Control theory and biological systems. Columbia University Press, New York

    Google Scholar 

  • Hainsworth R, Al-Shamma YMH (1988) Cardiovascular responses to stimulation of carotid baroreceptors in healthy subjects. Clin Sei 75: 159–65

    CAS  Google Scholar 

  • Halberg F, Johnson EA, Nelson W, Runge W, Sothern R (1972) Autorhythmometry — Procedures for physiologic self-measurements and their analysis. Physiol Teacher 1 (4): 1–11

    Google Scholar 

  • Haymet BT, McCloskey DI (1975) Baroreceptor and chemoreceptor influences on heart rate during the respiratory cycle in the dog. J Physiol 245: 699–712

    PubMed  CAS  Google Scholar 

  • Hellestrand KJ, Nathan AW, Camm A J (1982) Differential response to carotid sinus pressure during sinus rhythm and atrial fibrillation. Br Heart J 47: 504–6

    Article  PubMed  CAS  Google Scholar 

  • Hellman JB, Stacy RW (1976) Variation of respiratory sinus arrhythmia with age. J Appl Physiol 41: 734–8

    PubMed  CAS  Google Scholar 

  • Hering E (1871) Uber eine reflectorische Beziehung zwischen Lunge und Herz. Sitzber Akad Wiss Wien 64: 333–53

    Google Scholar 

  • Hoff HEH, Geddes LA (1965) The respiratory-heart rate response in atrial fibrillation. Cardiovasc Res Centre Bull 4: 54–64

    CAS  Google Scholar 

  • Hoff HEH, Geddes LA (1966) An analysis of the relationship between respiration and heart rate in atrial fibrillation. Cardiovasc Res Centre Bull 4: 81–95

    Google Scholar 

  • Horan LG, Kistler JC (1961) Study of ventricular response in atrial fibrillation. Circ Res 9: 305–11

    PubMed  CAS  Google Scholar 

  • Hrushesky WJM, Fader D, Schmitt O, Gilbertsen V (1984) The respiratory sinus arrhythmia: a measure of cardiac age. Science 224: 1001–4

    Article  PubMed  CAS  Google Scholar 

  • James TN, Urthaler F, Isobe JH (1973) Neurogenic influence on the atrial repolarization ( P-Tp) segment. Am J Cardiol 32: 799–807

    Article  PubMed  CAS  Google Scholar 

  • Kilgore ES (1920) Time relations of heart beats. Respiratory variations of heart rate in the presence of auricular fibrillation. Heart 7: 81–104

    Google Scholar 

  • Kirsh JA, Sahakian AV, Baerman JM, Swiryn S (1988) Ventricular response to atrial fibrillation: role of atrioventricular conduction pathways. J Am Coll Cardiol 12: 1265–72

    Article  PubMed  CAS  Google Scholar 

  • Lopes and Palmer JF (1976) Proposed respiratory ‘gating’ mechanism for cardiac slowing. Nature 264: 454–6

    Article  PubMed  CAS  Google Scholar 

  • Ludbrook J, Mancia G, Ferrari A, Zanchetti A (1975) The variable- pressure neck chamber method for studying the carotid baroreflex in man. Clin Sei Mol Med 85: 167–73

    Google Scholar 

  • Mackay MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197: 287–9

    Article  Google Scholar 

  • Martin P (1977) Paradoxical dynamic interaction of heart period and vagal activity on atrioventricular conduction in the dog. Circ Res 40: 81–9

    PubMed  CAS  Google Scholar 

  • Matthews E, Wood WB (1940) Cardiac arrhythmia during Cheyne- Stokes respiration. Bull Johns Hopkins Hosp 66: 335–52

    Google Scholar 

  • Mears EJ (1956) The association of Adams-Stokes attacks and Cheyne-Stokes respiration. Am Heart J 52: 935–9

    Article  PubMed  CAS  Google Scholar 

  • Melcher A (1976) Respiratory sinus arrhythmia in man: A study of heart rate regulating mechanisms. Acta Physiol Scand 97 (Suppl 435): 1–31

    Google Scholar 

  • Myerburg RJ (1972) Electrocardiographic diagnosis of sinus node rhythm variations and SA block. In: Schlant RC, Hurst JW (eds) Advances in electrocardiography. Grune and Stratton, New York

    Google Scholar 

  • O’Brien IAD, O’Hare P, Corrall RJM (1986) Heart rate variability in healthy subjects: effects of age and the derivation of normal ranges for tests of autonomic function. Br Heart J 55: 348–54

    Article  PubMed  Google Scholar 

  • Pickering TG, Davies J (1973) Estimation of the conduction time of the baroceptor-cardiac reflex in man. Cardiovasc Res 7: 213–19

    Article  PubMed  CAS  Google Scholar 

  • Rawles JM, Pai GR, Reid SR (1989a) A method of quantifying sinus arrhythmia: parallel effect of respiration on P-P and P-R intervals. Clinical Science 76: 103–8

    PubMed  CAS  Google Scholar 

  • Rawles JM, Pai GR, Reid SR (1989b) Paradoxical effect of respiration on ventricular rate in atrial fibrillation. Clin Sei 76: 109–12

    CAS  Google Scholar 

  • Resnik WH, Lathrop FW (1925) Changes in the heart rhythm associated with Cheyne-Stokes respiration. Arch Intern Med 36: 229–38

    Article  Google Scholar 

  • Smith SA (1982) Reduced sinus arrhythmia in diabetic autonomic neuropathy: diagnostic value of an age-related normal range. Br Med J 285: 1599–601

    Article  CAS  Google Scholar 

  • Smith SA, Stallard TJ, Littler WA (1986) Estimation of sinoaortic baroceptor heart rate reflex sensitivity and latency in man: a new microcomputer assisted method of analysis. Cardiovasc Res 20: 877–82

    Article  PubMed  CAS  Google Scholar 

  • Smyth HS, Sleight P, Pickering GW (1969) Reflex regulation of arterial pressure during sleep; a quantitative method of assessing baroreflex sensitivity. Circ Res 24: 109–21

    PubMed  CAS  Google Scholar 

  • Soloff LA, Zatuchni J (1954) The hyperactive carotid sinus reflex of the cardioinhibitory type in individuals with auricular fibrillation. Am J Med Sci 226: 281–9

    Article  Google Scholar 

  • Trzebski A, Raczkowska M, Kubin L (1980) Influence of respiratory activity and hypocapnia on the carotid baroreceptor reflex in man. In: Sleight P (ed) Arterial baroreceptors and hypertension. Oxford University Press, Oxford, pp 282–90

    Google Scholar 

  • Urbach JR, Grauman JJ, Straus SH (1970) Effects of inspiration, expiration, and apnea upon pacemaking and block in atrial fibrillation. Circulation 42: 261–9

    PubMed  CAS  Google Scholar 

  • Warner HR, Cox A (1962) A mathematical model of heart rate control by sympathetic and vagus efferent information. J Appl Physiol 17: 349–55

    PubMed  CAS  Google Scholar 

  • Waxman MB, Wald RW, Cameron D (1983) Interactions between the autonomic nervous system and tachycardias in man. Cardiol Clin 1: 143–85

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London Limited

About this chapter

Cite this chapter

Rawles, J. (1992). The Autonomic Control of Ventricular Rate in Atrial Fibrillation. In: Atrial Fibrillation. Springer, London. https://doi.org/10.1007/978-1-4471-1898-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1898-5_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1900-5

  • Online ISBN: 978-1-4471-1898-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics