Skip to main content

Paths in Simple Polyhedrons

  • Chapter
Euclidean Shortest Paths
  • 1032 Accesses

Abstract

Since the pioneering work by L. Cohen and R. Kimmel in 1997 on finding a contour as a minimal path between two endpoints, shortest paths in volume images have raised interest in computer vision and image analysis. This chapter considers the calculation of a Euclidean shortest path (ESP) in a 3D polyhedral space Π. We propose an approximate \(\kappa(\varepsilon) \cdot{\mathcal{O}}(M|V|)\) 3D ESP algorithm, not counting time for preprocessing. The preprocessing time complexity equals \({\mathcal{O}}(M|E| + |{\mathcal{F}}| +|V|\log|V|)\) for solving a special, but ‘fairly general’ case of the 3D ESP problem, where Π does not need to be convex. V and E are the sets of vertices and edges of Π, respectively, and \({\mathcal{F}}\) is the set of faces (triangles) of Π. M is the maximal number of vertices of a so-called critical polygon, and κ(ε)=(L 0L)/ε where L 0 is the length of an initial path and L is the true (i.e., optimum) path length. The given algorithm approximately solves three (previously known to be) NP-complete or NP-hard 3D ESP problems in time \(\kappa(\varepsilon) \cdot{\mathcal{O}}(k)\), where k is the number of layers in a stack, which is introduced in this chapter as being the problem environment. The proposed approximation method has straightforward applications for ESP problems when analysing polyhedral objects (e.g., in 3D imaging), of for ‘flying’ over a polyhedral terrain.

An approximate answer to the right problem is worth a good deal more than an exact answer to an approximate problem.

John Tukey (1915–2000)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If each \(P_{u_{i}}^{\bullet}\) is degenerated into a single edge, then there exists a unique solution to the ESP problem; independent of the chosen initialisation, solutions will converge to this unique solution if ε goes to zero; see [8, 23, 26].

  2. 2.

    \(S|_{x_{0}} = \{(x_{0}, y): (x, y) \in S \wedge x = x_{0} \}\).

  3. 3.

    See [20, Theorem 4].

  4. 4.

    See [7].

  5. 5.

    See [20, Theorem 5].

  6. 6.

    See [20, Theorem 6].

  7. 7.

    See [3, Theorem 9].

References

  1. Agarwal, P.K., Sharathkumar, R., Yu, H.: Approximate Euclidean shortest paths amid convex obstacles. In: Proc. ACM-SIAM Sympos. Discrete Algorithms, pp. 283–292 (2009)

    Google Scholar 

  2. Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Approximation algorithms for geometric shortest path problems. In: Proc. ACM Sympos. Theory Comput., pp. 286–295 (2000)

    Google Scholar 

  3. Bajaj, C.: The algebraic complexity of shortest paths in polyhedral spaces. In: Proc. Allerton Conf. Commun. Control Comput., pp. 510–517 (1985)

    Google Scholar 

  4. Balasubramanian, M., Polimeni, J.R., Schwartz, E.L.: Exact geodesics and shortest paths on polyhedral surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1006–1016 (2009)

    Article  Google Scholar 

  5. Benmansour, F., Cohen, L.D.: Fast object segmentation by growing minimal paths from a single point on 2D or 3D images. J. Math. Imaging Vis. 33, 209–221 (2009)

    Article  MathSciNet  Google Scholar 

  6. Buelow, T., Klette, R.: Rubber band algorithm for estimating the length of digitized space-curves. In: Proc. ICPR, vol. III, pp. 551–555. IEEE Comput. Soc., Los Alamitos (2000)

    Google Scholar 

  7. Canny, J., Reif, J.H.: New lower bound techniques for robot motion planning problems. In: Proc. IEEE Conf. Foundations Computer Science, pp. 49–60 (1987)

    Google Scholar 

  8. Choi, J., Sellen, J., Yap, C.-K.: Precision-sensitive Euclidean shortest path in 3-space. In: Proc. ACM Sympos. Computational Geometry, pp. 350–359 (1995)

    Google Scholar 

  9. Clarkson, K.L.: Approximation algorithms for shortest path motion planning. In: Proc. ACM Sympos. Theory Comput., pp. 56–65 (1987)

    Google Scholar 

  10. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. Int. J. Comput. Vis. 24, 57–78 (1997)

    Article  Google Scholar 

  11. Deschamps, T., Cohen, L.D.: Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Med. Image Anal. 5, 281–299 (2001)

    Article  Google Scholar 

  12. Har-Peled, S.: Constructing approximate shortest path maps in three dimensions. In: Proc. ACM Sympos. Computational Geometry, pp. 125–130 (1998)

    Google Scholar 

  13. Klette, R., Rosenfeld, A.: Digital Geometry. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  14. Li, F., Klette, R.: The class of simple cube-curves whose MLPs cannot have vertices at grid points. In: Proc. Discrete Geometry Computational Imaging. LNCS, vol. 3429, pp. 183–194. Springer, Berlin (2005)

    Chapter  Google Scholar 

  15. Li, F., Klette, R.: Exact and approximate algorithms for the calculation of shortest paths. Report 2141, IMA, Minneapolis. www.ima.umn.edu/preprints/oct2006 (2006)

  16. Li, F., Klette, R.: Rubberband algorithms for solving various 2D or 3D shortest path problems. In: Proc. Computing: Theory and Applications, The Indian Statistical Institute, Kolkata, pp. 9–18. IEEE Comput. Soc., Los Alamitos (2007)

    Google Scholar 

  17. Li, F., Klette, R.: Analysis of the rubberband algorithm. Image Vis. Comput. 25, 1588–1598 (2007)

    Article  Google Scholar 

  18. Liu, Y.A., Stoller, S.D.: Optimizing Ackermann’s function by incrementalization. In: Proc. ACM SIGPLAN Sympos. Partial Evaluation Semantics-Based Program Manipulation, pp. 85–91 (2003)

    Google Scholar 

  19. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (2000)

    Chapter  Google Scholar 

  20. Mitchell, J.S.B., Sharir, M.: New results on shortest paths in three dimensions. In: Proc. ACM Sympos. Computational Geometry, pp. 124–133 (2004)

    Google Scholar 

  21. Pan, X., Li, F., Klette, R.: Approximate shortest path algorithms for sequences of pairwise disjoint simple polygons. In: Proc. Canadian Conf. Computational Geometry, pp. 1–4. Winnipeg, Canada (2010)

    Google Scholar 

  22. Papadimitriou, C.H.: An algorithm for shortest path motion in three dimensions. Inf. Process. Lett. 20, 259–263 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sharir, M., Schorr, A.: On shortest paths in polyhedral spaces. SIAM J. Comput. 15, 193–215 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wachsmuth, B.G.: Interactive real analysis. http://web01.shu.edu/projects/reals/topo/index.html (2009). Accessed July 2011

  25. Wang, Y., Peterson, B.S., Staib, L.H.: 3D brain surface matching based on geodesics and local geometry. Comput. Vis. Image Underst. 89, 252–271 (2003)

    Article  Google Scholar 

  26. Yap, C.-K.: Towards exact geometric computation. Comput. Geom. 7, 3–23 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zadeh, H.Z.: Flying over a polyhedral terrain. Inf. Process. Lett. 105, 103–107 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fajie Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Li, F., Klette, R. (2011). Paths in Simple Polyhedrons. In: Euclidean Shortest Paths. Springer, London. https://doi.org/10.1007/978-1-4471-2256-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2256-2_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2255-5

  • Online ISBN: 978-1-4471-2256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics