Skip to main content

Metabolic Syndrome and Associated Kidney Disease

  • Chapter
  • First Online:
Pediatric Metabolic Syndrome

Abstract

With the rise in the incidence of childhood obesity, it is increasingly ­evident that the burden of chronic kidney disease (CKD) has increased proportionately and has its origins in early life. This chapter will discuss the central role of the kidney in the mediation of elements of the metabolic syndrome (MetS) including glucose disposal, hyperinsulinemia, uric acid excretion, and the renin-angiotensin-aldosterone system (RAAS). There is evidence that an adverse fetal environment with accelerated postnatal growth may contribute to a low nephron “endowment” and predispose to MetS and CKD in later life. The focus will be on the primary end points of hypertension, proteinuria, hyperuricemia, urolithiasis, and CKD. We will provide recommended treatment strategies and discuss necessary future research projects related to the MetS and CKD in children and adolescents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reaven GM. The kidney: an unwilling accomplice in syndrome X. Am J Kidney Dis. 1997;30:928–31.

    PubMed  CAS  Google Scholar 

  2. Steinberger J, Daniels SR, Eckel RH, et al. Progress and challenges in metabolic syndrome in children and adolescents: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular Nursing; and Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2009;119(4):628–47.

    PubMed  Google Scholar 

  3. Srivastava T. Nondiabetic consequences of obesity on kidney. Pediatr Nephrol. 2006;21:463–70.

    PubMed  Google Scholar 

  4. Horita S, Seki G, Yamada H. Insulin resistance, obesity, hypertension, and renal sodium transport. Int J Hypertens. 2011;2011:8. doi:10.4061/2011/391762.

    Google Scholar 

  5. Savino A, Pelliccia P, Chiarelli F, Mohn A. Obesity-related renal injury in childhood. Horm Res Paediatr. 2010;73:303–11.

    PubMed  CAS  Google Scholar 

  6. Sarafidis PA, Ruilopensulin LM. Insulin resistance, hyperinsulinemia, and renal injury: mechanisms and implications. Am J Nephrol. 2006;26:232–44.

    PubMed  Google Scholar 

  7. Quinones-Galvan A, Ferrannini E. Renal effects of insulin in man. J Nephrol. 1997;10:188–91.

    PubMed  CAS  Google Scholar 

  8. Weiss O, Anner H, Nephesh I, et al. Insulin-like growth factor-I (IGF-I) and IGF-I receptor gene expression in the kidney of the chronically hypoinsulinemic rat and hyperinsulinemic rat. Metabolism. 1995;44:982–6.

    PubMed  CAS  Google Scholar 

  9. Baricos WH. Chronic renal disease: do metalloproteinase inhibitors have a demonstrable role in extracellular matrix accumulation? Curr Opin Nephrol Hypertens. 1995;4:365–8.

    PubMed  CAS  Google Scholar 

  10. Zhang SL, Chen X, Filep JG, et al. Insulin inhibits angiotensinogen gene expression via the mitogen activated protein kinase pathway in rat kidney proximal tubular cells. Endocrinology. 1999;140:5285–92.

    PubMed  CAS  Google Scholar 

  11. Chen X, Zhang SL, Pang L, et al. Characterization of a putative insulin-responsive element and its binding protein(s) in rat angiotensinogen gene promoter: regulation by glucose and insulin. Endocrinology. 2001;142:2577–85.

    PubMed  CAS  Google Scholar 

  12. Sarafidis PA, Lasaridis AN. Insulin resistance and endothelin: another pathway for renal injury in patients with the cardiometabolic syndrome? J Cardiometab Syndr. 2008;3:183–7.

    PubMed  Google Scholar 

  13. Kohan DE. Endothelin, hypertension and chronic kidney disease: new insights. Curr Opin Nephrol Hypertens. 2010;19(2):134–9.

    PubMed  CAS  Google Scholar 

  14. Abitbol CL, Ingelfinger JR. Nephron mass and cardiovascular and renal disease risks. Semin Nephrol. 2009;29:445–54.

    PubMed  Google Scholar 

  15. Anderson S, Brenner BM. Effects of aging on the renal glomerulus. Am J Med. 1986;80:435–42.

    PubMed  CAS  Google Scholar 

  16. Merlet-Bénichou C, Gilbert T, Vilar J, et al. Nephron number: variability is the rule. Causes and consequences. Lab Invest. 1999;79:515–27.

    PubMed  Google Scholar 

  17. Hershkovitz D, Burbea Z, Skorecki K, Brenner BM. Fetal programming of adult kidney disease: cellular and molecular mechanisms. Clin J Am Soc Nephrol. 2007;2:334–42.

    PubMed  Google Scholar 

  18. Hoy WE, Douglas-Denton RN, Hughson M, et al. A stereological study of glomerular number and volume: preliminary findings in a multiracial study of kidneys at autopsy. Kidney Int. 2003;63:S31–7.

    Google Scholar 

  19. Rodríguez MM, Gómez AH, Abitbol CL, et al. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol. 2004;7:17–25.

    PubMed  Google Scholar 

  20. Hoy WE, Hughson MD, Douglas-Denton R, Amann K. Nephron number, hypertension, renal disease and renal failure. J Am Soc Nephrol. 2005;16:2557–64.

    PubMed  Google Scholar 

  21. Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med. 2003;348:101–8.

    PubMed  Google Scholar 

  22. Hoy WE, Hughson MD, Singh GR, et al. Reduced nephron number and glomerulomegaly in Australian Aborigines: a group at high risk for renal disease and hypertension. Kidney Int. 2006;70:104–10.

    PubMed  CAS  Google Scholar 

  23. Mañalich R, Reyes L, Herrera M, et al. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int. 2000;58:770–3.

    PubMed  Google Scholar 

  24. Regan FM, Cutfield WS, Jefferies C, et al. The impact of early nutrition in premature infants on later childhood insulin sensitivity and growth. Pediatrics. 2006;118(5):1943–9.

    PubMed  Google Scholar 

  25. Jimenez-Chillaron JC, Patti ME. To catch up or not to catch up: is this the question? Lessons from animal models. Curr Opin Endocrinol Diabetes Obes. 2007;14(1):23–9.

    PubMed  Google Scholar 

  26. Lucas A. Programming by early nutrition: an experimental approach. J Nutr. 1998;128:401S–6.

    PubMed  CAS  Google Scholar 

  27. Singhal A, Farooqi IS, O’Rahilly S, Lucas A. Early nutrition and leptin concentrations in later life. Am J Clin Nutr. 2002;75:993–9.

    PubMed  CAS  Google Scholar 

  28. Abitbol CL, Bauer CR, Montané B, et al. Long-term follow-up of extremely low birth weight infants with neonatal renal failure. Pediatr Nephrol. 2003;18:887–93.

    PubMed  Google Scholar 

  29. Hovi P, Andersson S, Eriksson JG, et al. Glucose regulation in young adults with very low birth weight. N Engl J Med. 2007;356:2053–63.

    PubMed  CAS  Google Scholar 

  30. Lackland DT, Bendal HE, Osmond C, et al. Low birth weight contributes to the high rates of early onset chronic renal failure on the Southeast United States. Arch Intern Med. 2000;160:1472–6.

    PubMed  CAS  Google Scholar 

  31. Vikse BE, Irgens LM, Leivestad T, et al. Low birth weight increases risk for end stage renal disease. J Am Soc Nephrol. 2008;19:151–7.

    PubMed  Google Scholar 

  32. Simonetti GD, Raio L, Surbek D, et al. Salt sensitivity of children with low birth weight. Hypertension. 2008;52:625–30.

    PubMed  CAS  Google Scholar 

  33. Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 1996;49:1774–7.

    PubMed  CAS  Google Scholar 

  34. Kambham N, Markowitz GS, Valeri AM, et al. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 2001;59:1498–509.

    PubMed  CAS  Google Scholar 

  35. Praga M, Hernández E, Herrero JC, et al. Influence of obesity on the appearance of proteinuria and renal insufficiency after unilateral nephrectomy. Kidney Int. 2000;58:2111–8.

    PubMed  CAS  Google Scholar 

  36. Praga M, Hernández E, Morales E, et al. Clinical features and long-term outcome of obesity-associated focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2001;16:1790–8.

    PubMed  CAS  Google Scholar 

  37. Abitbol CL, Chandar J, Rodríguez MM, et al. Obesity and preterm birth: additive risks in the progression of kidney disease in children. Pediatr Nephrol. 2009;24:1363–70.

    PubMed  Google Scholar 

  38. Adelman RD, Restaino JG, Alon US, Blowley DL. Proteinuria and focal segmental glomerulosclerosis in severely obese adolescents. J Pediatr. 2001;138:482–5.

    Google Scholar 

  39. Schwimmer JA, Markowitz GS, Valeri AM, et al. Secondary focal segmental glomerulosclerosis in non-obese patients with increased muscle mass. Clin Nephrol. 2003;60:233–41.

    PubMed  CAS  Google Scholar 

  40. Hodgin JB, Rasoulpour M, Markowitz GS, D’Agati VD. Very low birth weight is a risk factor for secondary focal segmental glomerulosclerosis. Clin J Am Soc Nephrol. 2009;4:71–6.

    PubMed  Google Scholar 

  41. Kawanishi K, Takei T, Kojima C, et al. Three cases of late-onset oligomeganephronia. NDT Plus. 2011;4:14–6.

    Google Scholar 

  42. Drukker A. Oligonephropathy: from a rare childhood disorder to a possible health problem in the adult. Isr Med Assoc J. 2002;4:191–5.

    PubMed  Google Scholar 

  43. Brenner BM, Mackenzie HS. Nephron mass as a risk factor for progression of renal disease. Kidney Int Suppl. 1997;63:S124–7.

    PubMed  CAS  Google Scholar 

  44. Hsu C, McCulloch CE, Iribarren C, et al. Body mass index and risk for end-stage renal disease. Ann Intern Med. 2006;144:21–8.

    PubMed  Google Scholar 

  45. Bonnet F, Deprele C, Sassolas A, et al. Excessive body weight as a new independent risk factor for clinical and pathological progression in primary IgA nephritis. Am J Kidney Dis. 2001;37:720–7.

    PubMed  CAS  Google Scholar 

  46. Meier-Kriesche HU, Arndorfer JA, Kaplan B. The impact of body mass index on renal transplant outcomes: a significant independent risk factor for graft failure and patient death. Transplantation. 2002;73:70–4.

    PubMed  Google Scholar 

  47. Singh GR, Hoy WE. Kidney volume, blood pressure and albuminuria: findings in an Australian Aboriginal community. Am J Kidney Dis. 2004;43:254–9.

    PubMed  Google Scholar 

  48. Narva AS. The spectrum of kidney disease in American Indians. Kidney Int Suppl. 2003;83:53–7.

    Google Scholar 

  49. Neilson EG. The fructose nation. J Am Soc Nephrol. 2007;18:2619–21.

    PubMed  Google Scholar 

  50. Johnson RJ, Sanchez-Lozada LG, Nakagawa T. The effect of fructose on renal biology and disease. J Am Soc Nephrol. 2010;21:2036–9.

    PubMed  CAS  Google Scholar 

  51. Stanhope KL, Havel PJ. Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Curr Opin Lipidol. 2008;19:16–24.

    PubMed  CAS  Google Scholar 

  52. Sanchez-Lozada LG, Tapia E, Jimenez A, et al. Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol. 2007;292:F423–9.

    PubMed  CAS  Google Scholar 

  53. Glushakova O, Kosugi T, Roncal C, et al. Fructose induces the inflammatory molecule ICAM-1 in endothelial cells. J Am Soc Nephrol. 2008;19:1712–20.

    PubMed  CAS  Google Scholar 

  54. Cirillo P, Gersch MS, Mu W, et al. Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in proximal tubular cells. J Am Soc Nephrol. 2009;20:545–55.

    PubMed  CAS  Google Scholar 

  55. Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359:1811–21.

    PubMed  CAS  Google Scholar 

  56. Nguyen S, Choi HK, Lustig RH, Hsu CY. Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents. J Pediatr. 2009;154:807–13.

    PubMed  CAS  Google Scholar 

  57. Feig DI, Johnson RJ. Hyperuricemia in childhood primary hypertension. Hypertension. 2003;42(3):247–52.

    PubMed  CAS  Google Scholar 

  58. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA. 2008;300:924–32.

    PubMed  CAS  Google Scholar 

  59. Badve SV, Brown F, Hawley CM, et al. Challenges of conducting a trial of uric-acid-lowering therapy in CKD. Nat Rev Nephrol. 2011;7:295–300.

    PubMed  CAS  Google Scholar 

  60. Sánchez-Lozada LG, Tapia E, Soto V, et al. Effect of febuxostat on the progression of renal disease in 5/6 nephrectomy rats with and without hyperuricemia. Nephron Physiol. 2008;108:69–78.

    Google Scholar 

  61. Brymora A, Flisinski M, Johnson RJ, et al. Nephrol dial transplant.. 2011. doi:10.1093/ndt/gfr223.

    Google Scholar 

  62. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89:2548–56.

    PubMed  CAS  Google Scholar 

  63. Campagnolo PD, Hoffman DJ, Vitolo MR. Waist-to-height ratio as a screening tool for children with risk factors for cardiovascular disease. Ann Hum Biol. 2011;38:265–70.

    PubMed  Google Scholar 

  64. Pinto-Sietsma SJ, Navis G, Janssen WMT, de Zeeuw D, Gans ROB, de Jong PE, for the PREVEND Study Group. A central body fat distribution is related to renal function impairment, even in lean subjects. Am J Kidney Dis. 2003;41:733–41.

    PubMed  Google Scholar 

  65. Sanad M, Gharib A. Evaluation of microalbuminuria in obese children and its relation to metabolic syndrome. Pediatr Nephrol. 2011;26:2193–9. doi:10.1007/s00467-011-1931-9.

    PubMed  Google Scholar 

  66. Savino A, Pelliccia P, Giannini C, et al. Implications for kidney disease in obese children and adolescents. Pediatr Nephrol. 2011;26:749–58.

    PubMed  Google Scholar 

  67. DeMarco VG, Johnson MS, Whaley-Connell AT, Sowers JR. Cytokine abnormalities in the etiology of the cardiometabolic syndrome. Curr Hypertens Rep. 2010;12:93–8.

    PubMed  CAS  Google Scholar 

  68. Wahba IM, Mak RH. Obesity and obesity-initiated metabolic syndrome: mechanistic links to chronic kidney disease. Clin J Am Soc Nephrol. 2007;2:550–62.

    PubMed  CAS  Google Scholar 

  69. Flynn JT, Alderman MH. Characteristics of children with primary hypertension seen at a referral center. Pediatr Nephrol. 2005;20:961–6.

    PubMed  Google Scholar 

  70. Bibbins-Domingo K, Coxson P, Pletcher MJ, et al. Adolescent overweight and future adult coronary heart disease. N Engl J Med. 2007;357:2371–9.

    PubMed  CAS  Google Scholar 

  71. Li Z, Snieder H, Harshfield GA, et al. A 15-year longitudinal study on ambulatory blood pressure tracking from childhood to early adulthood. Hypertens Res. 2009;32:404–10.

    PubMed  Google Scholar 

  72. Flynn JT. Metabolic syndrome as a predictor of cardiovascular risk in children and adolescents. Am J Hypertens. 2007;20(8):883.

    PubMed  Google Scholar 

  73. Flynn JT, Falkner BE. Obesity hypertension in adolescents: epidemiology, evaluation, and management. J Clin Hypertens (Greenwich). 2011;13:323–31.

    Google Scholar 

  74. Litwin M, Sladowska J, Antoniewicz J. Metabolic abnormalities, insulin resistance, and metabolic syndrome in children with primary hypertension. Am J Hypertens. 2007;20:875–82.

    PubMed  CAS  Google Scholar 

  75. Ostrow V, Wu S, Aguilar A, et al. Association between oxidative stress and masked hypertension in a multi-ethnic population of obese children and adolescents. J Pediatr. 2011;158:628–33.e1.

    PubMed  CAS  Google Scholar 

  76. Puri M, Flynn JT. Management of hypertension in children and adolescents with the metabolic syndrome. J Cardiometab Syndr. 2006;1(4):259–68.

    PubMed  Google Scholar 

  77. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents pediatrics. Pediatrics. 2004;114(Suppl):555–76.

    Google Scholar 

  78. Lurbe E, Torro I, Alvarez V, et al. Prevalence, persistence, and clinical significance of masked hypertension in youth. Hypertension. 2005;45:493–8.

    PubMed  CAS  Google Scholar 

  79. Urbina E, Alpert B, Flynn J, et al. Ambulatory blood pressure monitoring in children and adolescents: recommendations for standard assessment: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee of the council on cardiovascular disease in the young and the council for high blood pressure research. Hypertension. 2008;52:433–51.

    PubMed  CAS  Google Scholar 

  80. Lurbe E, Torro I, Aguilar F, et al. Added impact of obesity and insulin resistance in nocturnal blood pressure elevation in children and adolescents. Hypertension. 2008;51:635–41.

    PubMed  CAS  Google Scholar 

  81. Routledge FS, McFetridge-Durdle JA, Dean CR. Canadian Hypertension Society Night-time blood pressure patterns and target organ damage: a review. Can J Cardiol. 2007;23:132–8.

    PubMed  Google Scholar 

  82. Brady TM, Fivush B, Flynn JT, Parekh R. Ability of blood pressure to predict left ventricular hypertrophy in children with primary hypertension. J Pediatr. 2008;152:73–8.

    PubMed  Google Scholar 

  83. Tillin T, Forouhi N, McKeigue P, Chaturvedi N. Microalbuminuria and coronary heart disease risk in an ethnically diverse UK population: a prospective cohort study. J Am Soc Nephrol. 2005;16:3702–10.

    PubMed  Google Scholar 

  84. Ardissino G, Testa S, Dacco V, et al. Proteinuria as a predictor of disease progression in children with hypodysplastic nephropathy. Data from the Ital Kid Project. Pediatr Nephrol. 2004;19:172–7.

    PubMed  Google Scholar 

  85. Wong CS, Pierce CB, Cole SR, et al. Association of proteinuria with race, cause of chronic kidney disease, and glomerular filtration rate in the chronic kidney disease in children study. Clin J Am Soc Nephrol. 2009;4:812–9.

    PubMed  CAS  Google Scholar 

  86. Peralta CA, Shlipak MG, Judd S, et al. Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality. JAMA. 2011;305:1545–52.

    PubMed  CAS  Google Scholar 

  87. Satoh-Asahara N, Suganami T, Majima T, et al. Urinary cystatin C as a potential risk marker for cardiovascular disease and chronic kidney disease in patients with obesity and metabolic syndrome. Clin J Am Soc Nephrol. 2011;6:265–73.

    PubMed  CAS  Google Scholar 

  88. Wuhl E, Mehls O, Schaefer F, for the ESCAPE Trial Group, et al. Antihypertensive and antiproteinuric efficacy of ramipril in children with chronic renal failure. Kidney Int. 2004;6:768–76.

    Google Scholar 

  89. Schaefer F. Proteinuria: not a small problem in the little ones. Clin J Am Soc Nephrol. 2009;4:696–7.

    PubMed  Google Scholar 

  90. Musso C, Javor E, Cochran E, et al. Spectrum of renal diseases associated with extreme forms of insulin resistance. Clin J Am Soc Nephrol. 2006;1:616–22.

    PubMed  CAS  Google Scholar 

  91. Abitbol CL, Chandar J, Onder AM, et al. Profiling proteinuria in pediatric patients. Pediatr Nephrol. 2006;21:995–1002.

    PubMed  Google Scholar 

  92. Lambers Heerspink HJ, Gansevoort RT, Brenner BM, et al. Comparison of different measures of urinary protein excretion for prediction of renal events. J Am Soc Nephrol. 2010;21:1355–60.

    PubMed  CAS  Google Scholar 

  93. Lee S, Bacha F, Gungor N, Arslanian S. Comparisons of different definitions of pediatric metabolic syndrome: relation to abdominal obesity, insulin resistance, adiponectin, and inflammatory biomarkers. J Pediatr. 2008;152:177–84.

    PubMed  CAS  Google Scholar 

  94. Zimmet P, Alberti K, George MM, for the IDF Consensus Group, et al. The metabolic syndrome in children and adolescents – an IDF consensus report. Pediatr Diabetes. 2007;8:299–306.

    PubMed  Google Scholar 

  95. Tomaszewski M, Charchar FJ, Maric C, et al. Glomerular hyperfiltration: a new marker of metabolic risk. Kidney Int. 2007;71:816–21.

    PubMed  CAS  Google Scholar 

  96. Grundy SM, Cleeman JI, Merz CN, for the American Heart Association, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation. 2004;110:227–39. Erratum in: Circulation. 2004;110:763.

    PubMed  Google Scholar 

  97. Maalouf NM. Metabolic syndrome and the genesis of uric acid stones. J Ren Nutr. 2011;21:128–31.

    PubMed  CAS  Google Scholar 

  98. Sakhaee K, Adams-Huet B, Moe OW, et al. Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. Kidney Int. 2002;62:971–9.

    PubMed  CAS  Google Scholar 

  99. Coe FL, Strauss AL, Tembe V, et al. Uric acid saturation in calcium nephrolithiasis. Kidney Int. 1980;17:662–8.

    PubMed  CAS  Google Scholar 

  100. Maalouf NM, Cameron MA, Moe OW, et al. Low urine pH: a novel feature of the metabolic syndrome. Clin J Am Soc Nephrol. 2007;2:883–8.

    PubMed  CAS  Google Scholar 

  101. Ganji V, Zhang X, Shaikh N, Tangpricha V. Serum 25-hydroxyvitamin D concentrations are associated with prevalence of metabolic syndrome and various cardiometabolic risk factors in US children and adolescents based on assay-adjusted serum 25-hydroxyvitamin D data from NHANES 2001–2006. Am J Clin Nutr. 2011;94:225–33.

    PubMed  CAS  Google Scholar 

  102. Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr. 2004;80:1678S–88.

    PubMed  CAS  Google Scholar 

  103. Agarwal R, Vitamin D. Proteinuria, diabetic nephropathy, and progression of CKD. Clin J Am Soc Nephrol. 2009;4:1523–8.

    PubMed  CAS  Google Scholar 

  104. Witham MD, Dove FJ, Dryburgh M, et al. The effect of different doses of vitamin D(3) on markers of vascular health in patients with type 2 diabetes: a randomised controlled trial. Diabetologia. 2010;53:2112–9.

    PubMed  CAS  Google Scholar 

  105. Li YC, Kong J, Wei M, et al. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest. 2002;110:229–38.

    PubMed  CAS  Google Scholar 

  106. Petchey WG, Hickman IJ, Duncan E, et al. The role of 25-hydroxyvitamin D deficiency in promoting insulin resistance and inflammation in patients with chronic kidney disease: a randomised controlled trial. BMC Nephrol. 2009;10:41. doi:10.1186/1471-2369-10-41.

    PubMed  Google Scholar 

  107. Thiem U, Heinze G, Segel R, et al. VITA-D: cholecalciferol substitution in vitamin D deficient kidney transplant recipients: a randomized, placebo-controlled study to evaluate the post-transplant outcome. Trials. 2009;10:36. doi:10.1186/1745-6215-10-36.

    PubMed  Google Scholar 

  108. Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world—a growing challenge. N Engl J Med. 2007;356:213–5.

    PubMed  CAS  Google Scholar 

  109. Kelishadi R, Hashemi M, Mohammadifard N, et al. Association of changes in oxidative and proinflammatory states with changes in vascular function after a lifestyle modification trial among obese children. Clin Chem. 2008;54:147–53.

    PubMed  CAS  Google Scholar 

  110. Chandar J, Abitbol C, Montané B, Zilleruelo G. Angiotensin blockade as sole treatment for proteinuric kidney disease in children. Nephrol Dial Transplant. 2007;22:1332–7.

    PubMed  CAS  Google Scholar 

  111. de Paula RB, da Silva AA, Hall JE. Aldosterone antagonism attenuates obesity-induced hypertension and glomerular hyperfiltration. Hypertension. 2004;43:41–7.

    PubMed  Google Scholar 

  112. Bosch J, Lonn E, Pogue J, for the HOPE/HOPE-TOO Study Investigators, et al. Long-term effects of ramipril on cardiovascular events and on diabetes: results of the HOPE study extension. Circulation. 2005;30:1339–46.

    Google Scholar 

  113. Mann JF, Schmieder RE, McQueen M, for the ONTARGET Investigators, et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet. 2008;372:547–53.

    PubMed  CAS  Google Scholar 

  114. Tullus K. Dyslipidemia in children with CKD: should we treat with statins? Pediatr Nephrol. 2011. doi:10.1007/s00467-011-1872-3.

  115. de Ferranti S, Ludwig DS. Storm over statins—the controversy surrounding pharmacologic treatment of children. N Engl J Med. 2008;359:1309–12.

    PubMed  Google Scholar 

  116. Mak RH. 1,25 vitamin D3 corrects insulin and lipid abnormalities in uremia. Kidney Int. 1998;53:1353–7.

    PubMed  CAS  Google Scholar 

  117. Schwartz GJ, Muñoz A, Schneider MF, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20:629–37.

    PubMed  Google Scholar 

  118. Filler G, Lepage N. Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol. 2003;18:981–5.

    PubMed  Google Scholar 

  119. Tresaco B, Bueno G, Pineda I, et al. Homeostatic model assessment (HOMA) index cut-off values to identify the metabolic syndrome in children. J Physiol Biochem. 2005;6:381–8.

    Google Scholar 

  120. Fujihara CK, Noronha IL, Malheiros DM, et al. Combined mycophenolate mofetil and losartan therapy arrests established injury in the remnant kidney. J Am Soc Nephrol. 2000;11:283–90.

    PubMed  CAS  Google Scholar 

  121. Rodríguez-Iturbe B, Quiroz Y, Shahkarami A, et al. Mycophenolate mofetil ameliorates nephropathy in the obese Zucker rat. Kidney Int. 2005;68:1041–7.

    PubMed  Google Scholar 

  122. Fowler SM, Kon V, Ma L, et al. Obesity-related focal and segmental glomerulosclerosis: normalization of proteinuria in an adolescent after bariatric surgery. Pediatr Nephrol. 2009;24:851–5.

    PubMed  Google Scholar 

  123. Lawson ML, Kirk S, Mitchell T, for the Pediatric Bariatric Study Group, et al. One-year outcomes of Roux-en-Y gastric bypass for morbidly obese adolescents: a multicenter study from the Pediatric Bariatric Study Group. J Pediatr Surg. 2006;41:137–43.

    PubMed  Google Scholar 

  124. Shield JPH, Crowne E, Morgan J. Is there a place for bariatric surgery in treating childhood obesity? Arch Dis Child. 2008;93:369–72.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn L. Abitbol M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Abitbol, C.L., Seeherunvong, W. (2012). Metabolic Syndrome and Associated Kidney Disease. In: Lipshultz, S., Messiah, S., Miller, T. (eds) Pediatric Metabolic Syndrome. Springer, London. https://doi.org/10.1007/978-1-4471-2366-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2366-8_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2365-1

  • Online ISBN: 978-1-4471-2366-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics