Skip to main content

Spectroscopy and Diffusion Tensor Imaging in Disorders of Consciousness

  • Chapter
  • First Online:
Coma and Disorders of Consciousness

Abstract

Medical advances in intensive care currently allow patients suffering from severe brain lesions to survive. In most cases, this evolution is based on behavioral testing which implies some subjectivity and does not always lead to an accurate diagnosis. Magnetic resonance imaging (MRI) may help to improve the diagnosis of patients with disorders of consciousness and provide prognosis regarding the recovery of patients’ brain functioning. Indeed, spectroscopy and diffusion tensor imaging detect invisible tissue lesions using FLAIR and T2* sequences. These techniques allow a better diagnosis and prognosis of patients with disorders of consciousness (particularly when they are combined) and permit a better detection of the deterioration or recovery of post-traumatic brain functioning by considering the fluctuation of the NAA/Cr and FA values in time. To our mind, in the future these non-invasive techniques will play a determinative role in the monitoring of post-comatose patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laureys S, Boly M. The changing spectrum of coma. Nat Clin Pract Neurol. 2008;4:544–6.

    Article  PubMed  Google Scholar 

  2. Childs NL, Mercer WN, Childs HW. Accuracy of diagnosis of persistent vegetative state. Neurology. 1993;43:1465–7.

    Article  PubMed  CAS  Google Scholar 

  3. Andrews K, Murphy L, Munday R, et al. Misdiagnosis of the vegetative state: retrospective study in a rehabilitation unit. BMJ. 1996;313:13–6.

    Article  PubMed  CAS  Google Scholar 

  4. Schnakers C, Vanhaudenhuyse A, Giacino J, et al. Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurol. 2009;9:35.

    Article  PubMed  Google Scholar 

  5. Kampfl A, Schmutzhard E, Franz G, et al. Prediction of recovery from post-traumatic vegetative state with cerebral magnetic-resonance imaging. Lancet. 1998;351:1763–7.

    Article  PubMed  CAS  Google Scholar 

  6. Shibata Y, Matsumura A, Meguro K, et al. Differentiation of mechanism and prognosis of traumatic brain stem lesions detected by magnetic resonance imaging in the acute stage. Clin Neurol Neurosurg. 2000;102:124–8.

    Article  PubMed  CAS  Google Scholar 

  7. Firsching R, Woischneck D, Klein S, et al. Brain stem lesions after head injury. Neurol Res. 2002;24:145–6.

    Article  PubMed  Google Scholar 

  8. Uzan M, Albayram S, Dashti SG, et al. Thalamic proton magnetic resonance spectroscopy in vegetative state induced by traumatic brain injury. J Neurol Neurosurg Psychiatry. 2003;74:33–8.

    Article  PubMed  CAS  Google Scholar 

  9. Salazar AM, Grafman JH, Vance SC, et al. Consciousness and amnesia after penetrating head injury: neurology and anatomy. Neurology. 1986;36:178–87.

    Article  PubMed  CAS  Google Scholar 

  10. Huisman TA, Schwamm LH, Schaefer PW, et al. Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR Am J Neuroradiol. 2004;25:370–6.

    PubMed  Google Scholar 

  11. Ross BD, Ernst T, Kreis R, et al. 1H MRS in acute traumatic brain injury. J Magn Reson Imaging. 1998;8:829–40.

    Article  PubMed  CAS  Google Scholar 

  12. Marino S, Zei E, Battaglini M, et al. Acute metabolic brain changes following traumatic brain injury and their relevance to clinical severity and outcome. J Neurol Neurosurg Psychiatry. 2007;78:501–7.

    Article  PubMed  Google Scholar 

  13. Trivedi MA, Ward MA, Hess TM, et al. Longitudinal changes in global brain volume between 79 and 409 days after traumatic brain injury: relationship with duration of coma. J Neurotrauma. 2007;24:766–71.

    Article  PubMed  Google Scholar 

  14. Weiss N, Galanaud D, Carpentier A, et al. Clinical review: prognostic value of magnetic resonance imaging in acute brain injury and coma. Crit Care. 2007;11:230.

    Article  PubMed  Google Scholar 

  15. Carpentier A, Galanaud D, Puybasset L, et al. Early morphologic and spectroscopic magnetic resonance in severe traumatic brain injuries can detect “invisible brain stem damage” and predict “vegetative states”. J Neurotrauma. 2006;23:674–85.

    Article  PubMed  Google Scholar 

  16. Yanagawa Y, Tsushima Y, Tokumaru A, et al. A quantitative analysis of head injury using T2*-weighted gradient-echo imaging. J Trauma. 2000;49:272–7.

    Article  PubMed  CAS  Google Scholar 

  17. Wedekind C, Fischbach R, Pakos P, et al. Comparative use of magnetic resonance imaging and electrophysiologic investigation for the prognosis of head injury. J Trauma. 1999;47:44–9.

    Article  PubMed  CAS  Google Scholar 

  18. Firsching R, Woischneck D, Diedrich M, et al. Early magnetic resonance imaging of brainstem lesions after severe head injury. J Neurosurg. 1998;89:707–12.

    Article  PubMed  CAS  Google Scholar 

  19. Danielsen ER, Ross B. Magnetic resonance spectroscopy diagnosis of neurological diseases. 1st ed. New York: Marcel Dekker, Inc; 1999.

    Google Scholar 

  20. Baslow MH, Suckow RF, Gaynor K, et al. Brain damage results in down-regulation of N-acetylaspartate as a neuronal osmolyte. Neuromolecular Med. 2003;3:95–104.

    Article  PubMed  CAS  Google Scholar 

  21. Moffett JR, Ross B, Arun P, et al. N-acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol. 2007;81:89–131.

    Article  PubMed  CAS  Google Scholar 

  22. Sullivan EV, Adalsteinsson E, Spielman DM, et al. N-acetylaspartate–a marker of neuronal integrity. Ann Neurol. 2001;50:823. author reply 4–5.

    Article  PubMed  CAS  Google Scholar 

  23. Tshibanda L, Vanhaudenhuyse A, Galanaud D, et al. Magnetic resonance spectroscopy and diffusion tensor imaging in coma survivors: promises and pitfalls. Prog Brain Res. 2009;177:215–29.

    Article  PubMed  Google Scholar 

  24. Choe BY, Suh TS, Choi KH, et al. Neuronal dysfunction in patients with closed head injury evaluated by in vivo 1 H magnetic resonance spectroscopy. Invest Radiol. 1995;30:502–6.

    Article  PubMed  CAS  Google Scholar 

  25. Cecil KM, Hills EC, Sandel ME, et al. Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. J Neurosurg. 1998;88:795–801.

    Article  PubMed  CAS  Google Scholar 

  26. Garnett MR, Blamire AM, Corkill RG, et al. Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain. 2000;123(Pt 10):2046–54.

    Article  PubMed  Google Scholar 

  27. Holshouser BA, Tong KA, Ashwal S, et al. Prospective longitudinal proton magnetic resonance spectroscopic imaging in adult traumatic brain injury. J Magn Reson Imaging. 2006;24:33–40.

    Article  PubMed  Google Scholar 

  28. Brooks WM, Stidley CA, Petropoulos H, et al. Metabolic and cognitive response to human traumatic brain injury: a quantitative proton magnetic resonance study. J Neurotrauma. 2000;17:629–40.

    Article  PubMed  CAS  Google Scholar 

  29. Castillo M, Kwock L, Mukherji SK. Clinical applications of proton MR spectroscopy. AJNR Am J Neuroradiol. 1996;17:1–15.

    PubMed  CAS  Google Scholar 

  30. Wood SJ, Berger G, Velakoulis D, et al. Proton magnetic resonance spectroscopy in first episode psychosis and ultra high-risk individuals. Schizophr Bull. 2003;29:831–43.

    Article  PubMed  Google Scholar 

  31. Huisman T, Sorensen A, Hergan K, et al. Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head injury. J Comput Assist Tomogr. 2003;27:5–11.

    Article  PubMed  Google Scholar 

  32. Perlbarg V, Puybasset L, Tollard E, et al. Relation between brain lesion location and clinical outcome in patients with severe traumatic brain injury: a diffusion tensor imaging study using voxel-based approaches. Hum Brain Mapp. 2009;30:3924–33.

    Article  PubMed  Google Scholar 

  33. Tollard E, Galanaud D, Perlbarg V, et al. Experience of diffusion tensor imaging and 1H spectroscopy for outcome prediction in severe traumatic brain injury: preliminary results. Crit Care Med. 2009;37:1448–55.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Flory Luaba Tshibanda M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Tshibanda, JF.L., Demertzi, A., Soddu, A. (2012). Spectroscopy and Diffusion Tensor Imaging in Disorders of Consciousness. In: Schnakers, C., Laureys, S. (eds) Coma and Disorders of Consciousness. Springer, London. https://doi.org/10.1007/978-1-4471-2440-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2440-5_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2439-9

  • Online ISBN: 978-1-4471-2440-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics