Skip to main content

Active Movement Reduces the Tactile Discrimination Performance

  • Chapter
Immersive Multimodal Interactive Presence

Abstract

Self-performed arm movements are known to increase the tactile detection threshold (i.e., decrease of tactile sensitivity) which is part of a phenomenon called tactile suppression. Today, the origin and the effects of tactile suppression are not fully understood. Tactile discrimination tasks have been utilized to quantify the changes in tactile sensitivity due to arm movements and to identify the origin of tactile suppression. The results show that active arm movement also increases tactile discrimination thresholds which has never been shown before. Furthermore, it is shown that tactile sensitivity drops at approximately 100 ms before the actual arm movement. We conclude that tactile suppression has two origins: (1) a movement related motor command which is a neuronal signal that can be measured 100 ms before a muscle contraction. This motor command is the origin for the increase of the discrimination threshold prior to the arm movement and (2) task irrelevant sensory input which reduces tactile sensitivity after the onset of the arm movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kastner, S., De Weerd, P., Desimone, R., Ungerleider, L.G.: Mechanisms of directed attention in the human extrastriate cortex as revealed by functional mri. Science 282(5386), 108–111 (1998)

    Article  Google Scholar 

  2. Burr, D.C., Holt, J., Johnstone, J.R., Ross, J.: Selective depression of motion sensitivity during saccades. J. Physiol. 333, 1–15 (1982)

    Google Scholar 

  3. Burr, D.C., Morrone, M.C., Ross, J.: Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature 371(6497), 511–513 (1994)

    Article  Google Scholar 

  4. Richards, W.A.: Saccadic suppression. J. Opt. Soc. Am. 59, 617–623 (1969)

    Article  Google Scholar 

  5. Helmholtz, H.: Handbuch der physiologischen Optik. Voss, Leipzig (1867)

    Google Scholar 

  6. von Holst, E., Mittelstaedt, H.: Das Reafferenzprinzip. Naturwissenschaften 20, 464–475 (1950)

    Article  Google Scholar 

  7. Ilg, U.J., Hoffmann, K.P.: Motion perception during saccades. Vis. Res. 33(2), 211–220 (1993)

    Article  Google Scholar 

  8. Matin, E.: Saccadic suppression: a review and an analysis. Psychol. Bull. 81(12), 899–917 (1974)

    Article  Google Scholar 

  9. Sperry, R.W.: Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comp. Physiol. Psychol. 43(6), 482–489 (1950)

    Article  Google Scholar 

  10. Holt, E.: Eye movement and central anesthesia. Harv. Psychol. Stud. 1, 3–45 (1903)

    Google Scholar 

  11. Mackay, D.M.: Elevation of visual threshold by displacement of retinal image. Nature 225(5227), 90–92 (1970)

    Article  Google Scholar 

  12. Burr, D.C., Morgan, M.J., Morrone, M.C.: Saccadic suppression precedes visual motion analysis. Curr. Biol. 9(20), 1207–1209 (1999)

    Article  Google Scholar 

  13. Bridgeman, B., Hendry, D., Stark, L.: Failure to detect displacement of the visual world during saccadic eye movements. Vis. Res. 15(6), 719–722 (1975)

    Article  Google Scholar 

  14. Shioiri, S., Cavanagh, P.: Saccadic suppression of low-level motion. Vis. Res. 29(8), 915–928 (1989)

    Article  Google Scholar 

  15. Diamond, M.R., Ross, J., Morrone, M.C.: Extraretinal control of saccadic suppression. J. Neurosci. 20(9), 3449–3455 (2000)

    Google Scholar 

  16. Blakemore, S.J., Frith, C.D., Wolpert, D.M.: Spatio-temporal prediction modulates the perception of self-produced stimuli. J. Cogn. Neurosci. 11(5), 551–559 (1999)

    Article  Google Scholar 

  17. Blakemore, S.J., Goodbody, S.J., Wolpert, D.M.: Predicting the consequences of our own actions: the role of sensorimotor context estimation. J. Neurosci. 18(18), 7511–7518 (1998)

    Google Scholar 

  18. Blakemore, S.J., Wolpert, D., Frith, C.: Why can’t you tickle yourself? NeuroReport 11(11), 11–16 (2000)

    Article  Google Scholar 

  19. Blakemore, S.J., Wolpert, D.M., Frith, C.D.: Central cancellation of self-produced tickle sensation. Nat. Neurosci. 1(7), 635–640 (1998)

    Article  Google Scholar 

  20. Blakemore, S.J., Wolpert, D.M., Frith, C.D.: The cerebellum contributes to somatosensory cortical activity during self-produced tactile stimulation. NeuroImage 10(4), 448–459 (1999)

    Article  Google Scholar 

  21. Rushton, D.N., Rothwell, J.C., Craggs, M.D.: Gating of somatosensory evoked potentials during different kinds of movement in man. Brain 104(3), 465–491 (1981)

    Article  Google Scholar 

  22. Chapman, C.E., Beauchamp, E.: Differential controls over tactile detection in humans by motor commands and peripheral reafference. J. Neurophysiol. 96(3), 1664–1675 (2006)

    Article  Google Scholar 

  23. Seki, K., Perlmutter, S.I., Fetz, E.E.: Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nat. Neurosci. 6(12), 1309–1316 (2003)

    Article  Google Scholar 

  24. Chapman, C.E., Bushnell, M.C., Miron, D., Duncan, G.H., Lund, J.P.: Sensory perception during movement in man. Exp. Brain Res. 68(3), 516–524 (1987)

    Article  Google Scholar 

  25. Post, L.J., Zompa, I.C., Chapman, C.E.: Perception of vibrotactile stimuli during motor activity in human subjects. Exp. Brain Res. 100(1), 107–120 (1994)

    Article  Google Scholar 

  26. Schmidt, R.F., Schady, W.J., Torebjork, H.E.: Gating of tactile input from the hand. I. Effects of finger movement. Exp. Brain Res. 79(1), 97–102 (1990)

    Article  Google Scholar 

  27. Schmidt, R.F., Torebjork, H.E., Schady, W.J.: Gating of tactile input from the hand. II. Effects of remote movements and anaesthesia. Exp. Brain Res. 79(1), 103–108 (1990)

    Article  Google Scholar 

  28. Williams, S.R., Shenasa, J., Chapman, C.E.: Time course and magnitude of movement-related gating of tactile detection in humans. I. Importance of stimulus location. J. Neurophysiol. 79(2), 947–963 (1998)

    Google Scholar 

  29. Lamb, G.D.: Tactile discrimination of textured surfaces: psychophysical performance measurements in humans. J. Physiol. 338, 551–565 (1983)

    Google Scholar 

  30. Ueberle, M., Mock, N., Buss, M.: Vishard10, a novel hyper-redundant haptic interface. In: 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (HAPTICS’04) (2004)

    Google Scholar 

  31. Drewing, K., Fritschi, M., Zopf, R., Ernst, M.O., Buss, M.: Tactile display exerting shear force via lateral displacement. ACM Trans. Appl. Percept. 2(2), 118–131 (2005)

    Article  Google Scholar 

  32. Faisal, A.A., Selen, L.P., Wolpert, D.M.: Noise in the nervous system. Nat. Rev., Neurosci. 9, 292–303 (2008)

    Article  Google Scholar 

  33. Chapman, C.E., Jiang, W., Lamarre, Y.: Modulation of lemniscal input during conditioned arm movements in the monkey. Exp. Brain Res. 72(2), 316–334 (1988)

    Article  Google Scholar 

  34. Cohen, L.G., Starr, A.: Localization, timing and specificity of gating of somatosensory evoked potentials during active movement in man. Brain 110(Pt 2), 451–467 (1987)

    Article  Google Scholar 

  35. Dyhre-Poulsen, P.: Perception of tactile stimuli before ballistic and during the following manner tracking movements. In: Gordon, G. (ed.) Active Touch, pp. 171–176. Pergamon, Oxford (1978)

    Google Scholar 

  36. Ghez, C., Pisa, M.: Inhibition of afferent transmission in cuneate nucleus during voluntary movement in the cat. Brain Res. 40(1), 145–155 (1972)

    Article  Google Scholar 

  37. Jiang, W., Lamarre, Y., Chapman, C.E.: Modulation of cutaneous cortical evoked potentials during isometric and isotonic contractions in the monkey. Brain Res. 536(1–2), 69–78 (1990)

    Article  Google Scholar 

  38. Kron, A., Schmidt, G.: Haptic telepresent control technology applied to disposal of explosive ordnances: Principles and experimental results. In: Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), pp. 1505–1510 (2005)

    Chapter  Google Scholar 

  39. Williams, S.R., Chapman, C.E.: Time course and magnitude of movement-related gating of tactile detection in humans. II. Effects of stimulus intensity. J. Neurophysiol. 84(2), 863–875 (2000)

    Google Scholar 

  40. Williams, S.R., Chapman, C.E.: Time course and magnitude of movement-related gating of tactile detection in humans. III. Effect of motor tasks. J. Neurophysiol. 88(4), 1968–1979 (2002)

    Article  Google Scholar 

  41. Eccles, J.C., Schmidt, R.F., Willis, W.D.: Depolarization of the central terminals of cutaneous afferent fibers. J. Neurophysiol. 26(4), 646–661 (1963)

    Google Scholar 

  42. Janig, W., Schmidt, R.F., Zimmermann, M.: Two specific feedback pathways to the central afferent terminals of phasic and tonic mechanoreceptors. Exp. Brain Res. 6(2), 116–129 (1968)

    Google Scholar 

  43. Jankowska, E., Slawinska, U., Hammar, I.: Differential presynaptic inhibition of actions of group II afferents in di- and polysynaptic pathways to feline motoneurones. J. Physiol. 542(Pt 1), 287–299 (2002)

    Article  Google Scholar 

  44. Rudomin, P., Schmidt, R.F.: Presynaptic inhibition in the vertebrate spinal cord revisited. Exp. Brain Res. 129(1), 1–37 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Martin Buss and Angelika Peer for providing us with the ViSHaRD10 and the DeKIFeD4 devices and the help for setting up these systems in our lab. Furthermore, we thank Michael Fritschi and Mario Kleiner with help in the programming of the experimental procedure, Massimiliano Di Luca for help in conceptualizing the experiment and Alexandra Reichenbach and Axel Tielscher for help with the EMG analysis. This work was partly supported by the ImmerSence project within the 6th Framework Programme of the European Union, FET—Presence Initiative, contract number IST-2006-027141, see also www.immersence.info.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco P. Vitello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Vitello, M.P., Fritschi, M., Ernst, M.O. (2012). Active Movement Reduces the Tactile Discrimination Performance. In: Peer, A., Giachritsis, C. (eds) Immersive Multimodal Interactive Presence. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-2754-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2754-3_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2753-6

  • Online ISBN: 978-1-4471-2754-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics