Skip to main content

The Hormonal Milieu in Obesity and Influences on the Trabecular, Cortical, and Geometric Properties of Bone

  • Chapter
  • First Online:
Nutritional Influences on Bone Health

Abstract

Obesity is associated with alterations in several endocrine factors, some of which are involved in regulating bone metabolism. The higher serum concentrations of parathyroid hormone (PTH), estradiol, pancreatic hormones, and adipokines such as leptin, resistin, and cytokines and the lower 25-hydroxyvitamin D (25OHD) have specific actions on the skeleton and regulate cortical and trabecular bone differently. Recent evidence suggests that bone quality is altered in obesity with a higher trabecular volumetric bone mineral density (vBMD), while cortical vBMD is lower. Also, the obese are at greater risk of fracture for a given BMD compared to normal weight individuals supporting the evidence that bone quality is altered due to excess adiposity. Higher concentrations of serum PTH have a catabolic effect on cortical bone and may play a role in reducing cortical vBMD in obesity. The lower serum 25OHD, higher leptin and resistin, and lower adiponectin may also independently contribute to the lower cortical vBMD in obesity. There is little evidence to show that higher pancreatic hormones and cytokines influence trabecular and cortical bone in obesity. The altered hormonal milieu in obesity is one important factor that explains bone architectural changes that occur due to excess adiposity. However, other factors such as diet, genetic factors, altered mechanical loading, and/or other environmental factors may also contribute to bone quality and site-specific fracture risk in obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. Obesity and overweight. Geneva: World Health Organization; May 2012. http://www.who.int/mediacentre/factsheets/fs311/en/. Last Accessed on 29 Aug 2012.

  2. Ljungvall A, Zimmerman FJ. Bigger bodies: long-term trends and disparities in obesity and body-mass index among U.S. adults, 1960–2008. Soc Sci Med. 2012;75:109–19.

    Article  PubMed  Google Scholar 

  3. FastStats (Centers for Disease Control and Prevention). Obesity and overweight. Atlanta: CDC; 2011. http://www.cdc.gov/obesity/adult/causes/index.html. Accessed 9 Sept 2012.

  4. Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME. Playing with bone and fat. J Cell Biochem. 2006;98:251–66.

    Article  PubMed  CAS  Google Scholar 

  5. Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW. Relationship of obesity with osteoporosis. J Clin Endocrinol Metab. 2007;92:1640–6.

    Article  PubMed  CAS  Google Scholar 

  6. Frost HM. Obesity, and bone strength and “mass”: a tutorial based on insights from a new paradigm. Bone. 1997;21:211–4.

    Article  PubMed  CAS  Google Scholar 

  7. Hangartner TN, Johnston CC. Influence of fat on bone measurements with dual-energy absorptiometry. Bone Miner. 1990;9:71–81.

    Article  PubMed  CAS  Google Scholar 

  8. Bolotin HH. A new perspective on the causal influence of soft tissue composition on DXA-measured in vivo bone mineral density. J Bone Miner Res. 1998;13:1739–46.

    Article  PubMed  CAS  Google Scholar 

  9. Tothill P. Dual-energy x-ray absorptiometry measurements of total-body bone mineral during weight change. J Clin Densitom. 2005;8:31–8.

    Article  PubMed  Google Scholar 

  10. Laslett LL, Just Nee Foley SJ, Quinn SJ, Winzenberg TM, Jones G. Excess body fat is associated with higher risk of vertebral deformities in older women but not in men: a cross-sectional study. Osteoporos Int. 2012;23:67–74.

    Article  PubMed  CAS  Google Scholar 

  11. Liu G, Peacock M, Eilam O, Dorulla G, Braunstein E, Johnston CC. Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women. Osteoporos Int. 1997;7:564–9.

    Article  PubMed  CAS  Google Scholar 

  12. Hansen KE, Vallarta-Ast N, Krueger D, Gangnon R, Drezner MK, Binkley N. Use of the lowest vertebral body T-score to diagnose lumbar osteoporosis in men: is “cherry picking” appropriate? J Clin Densitom. 2004;7:376–81.

    Article  PubMed  Google Scholar 

  13. Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone. 1993;14:595–608.

    Article  PubMed  CAS  Google Scholar 

  14. Rauch F, Tutlewski B, Schonau E. The bone behind a low areal bone mineral density: peripheral quantitative computed tomographic analysis in a woman with osteogenesis imperfecta. J Musculoskelet Neuronal Interact. 2002;2:306–8.

    PubMed  CAS  Google Scholar 

  15. Pollock NK, Laing EM, Baile CA, Hamrick MW, Hall DB, Lewis RD. Is adiposity advantageous for bone strength? A peripheral quantitative computed tomography study in late adolescent females. Am J Clin Nutr. 2007;86:1530–8.

    PubMed  CAS  Google Scholar 

  16. Wetzsteon RJ, Petit MA, Macdonald HM, Hughes JM, Beck TJ, McKay HA. Bone structure and volumetric BMD in overweight children: a longitudinal study. J Bone Miner Res. 2008;23:1946–53.

    Article  PubMed  Google Scholar 

  17. Cole ZA, Harvey NC, Kim M, Ntani G, Robinson SM, Inskip HM, Godfrey KM, Cooper C, Dennison EM. Increased fat mass is associated with increased bone size but reduced volumetric density in pre pubertal children. Bone. 2012;50(2):562–7.

    Article  PubMed  CAS  Google Scholar 

  18. Ducher G, Bass SL, Naughton GA, Eser P, Telford RD, Daly RM. Overweight children have a greater proportion of fat mass relative to muscle mass in the upper limbs than in the lower limbs: implications for bone strength at the distal forearm. Am J Clin Nutr. 2009;90:1104–11.

    Article  PubMed  CAS  Google Scholar 

  19. Sukumar D, Schlussel Y, Riedt CS, Gordon C, Stahl T, Shapses SA. Obesity alters cortical and trabecular bone density and geometry in women. Osteoporos Int. 2011;22:635–45.

    Article  PubMed  CAS  Google Scholar 

  20. Taes YE, Lapauw B, Vanbillemont G, Bogaert V, De BD, Zmierczak H, Goemaere S, Kaufman JM. Fat mass is negatively associated with cortical bone size in young healthy male siblings. J Clin Endocrinol Metab. 2009;94:2325–31.

    Article  PubMed  CAS  Google Scholar 

  21. Uusi-Rasi K, Laaksonen M, Mikkila V, Tolonen S, Raitakari OT, Viikari J, Lehtimaki T, Kahonen M, Sievanen H. Overweight in childhood and bone density and size in adulthood. Osteoporos Int. 2012;23:1453–61.

    Article  PubMed  CAS  Google Scholar 

  22. Nielson CM, Marshall LM, Adams AL, Leblanc ES, Cawthon PM, Ensrud K, Stefanick ML, Barrett-Connor E, Orwoll ES. BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res. 2011;26:496–502.

    Article  PubMed  Google Scholar 

  23. Premaor MO, Pilbrow L, Tonkin C, Parker RA, Compston J. Obesity and fractures in postmenopausal women. J Bone Miner Res. 2010;25:292–7.

    Article  PubMed  Google Scholar 

  24. Nielson CM, Srikanth P, Orwoll ES. Obesity and fracture in men and women: an epidemiological perspective. J Bone Miner Res. 2012;27:1–10.

    Article  PubMed  Google Scholar 

  25. De Laet C, Kanis JA, Oden A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton III LJ, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16:1330–8.

    Article  PubMed  Google Scholar 

  26. Holmberg AH, Johnell O, Nilsson PM, Nilsson J, Berglund G, Akesson K. Risk factors for fragility fracture in middle age. A prospective population-based study of 33,000 men and women. Osteoporos Int. 2006;17:1065–77.

    Article  PubMed  CAS  Google Scholar 

  27. Gnudi S, Sitta E, Lisi L. Relationship of body mass index with main limb fragility fractures in postmenopausal women. J Bone Miner Metab. 2009;27:479–84.

    Article  PubMed  Google Scholar 

  28. Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, Pfeilschifter J, Silverman S, Diez-Perez A, Lindsay R, Saag KG, Netelenbos JC, Gehlbach S, Hooven FH, Flahive J, Adachi JD, Rossini M, Lacroix AZ, Roux C, Sambrook PN, Siris ES. Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med. 2011;124:1043–50.

    Article  PubMed  Google Scholar 

  29. Lang TF, Cauley J, Tylavsky F, Bauer D, Cummings S, Harris T. Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging and body composition study. J Bone Miner Res. 2010;25(3):513–9.

    Article  PubMed  Google Scholar 

  30. Goulding A, Grant AM, Williams SM. Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Miner Res. 2005;20:2090–6.

    Article  PubMed  Google Scholar 

  31. Di Monaco M, Vallero F, Di Monaco R, Mautino F, Cavanna A. Body mass index and functional recovery after hip fracture: a survey study of 510 women. Aging Clin Exp Res. 2006;18:57–62.

    PubMed  Google Scholar 

  32. Leet AI, Pichard CP, Ain MC. Surgical treatment of femoral fractures in obese children: does excessive body weight increase the rate of complications? J Bone Joint Surg Am. 2005;87:2609–13.

    Article  PubMed  Google Scholar 

  33. Salamone LM, Glynn N, Black D, Epstein RS, Palermo L, Meilahn E, Kuller LH, Cauley JA. Body composition and bone mineral density in premenopausal and early perimenopausal women. J Bone Miner Res. 1995;10:1762–8.

    Article  PubMed  CAS  Google Scholar 

  34. Travison TG, Araujo AB, Esche GR, Beck TJ, McKinlay JB. Lean mass and not fat mass is associated with male proximal femur strength. J Bone Miner Res. 2008;23:189–98.

    Article  PubMed  Google Scholar 

  35. Binkley N, Buehring B. Beyond FRAX: it’s time to ­consider “sarco-osteopenia”. J Clin Densitom. 2009;12:413–6.

    Article  PubMed  Google Scholar 

  36. Halberg N, Wernstedt-Asterholm I, Scherer PE. The adipocyte as an endocrine cell. Endocrinol Metab Clin North Am. 2008;37:753, xi.

    Article  PubMed  CAS  Google Scholar 

  37. Chen Z, Lohman TG, Stini WA, Ritenbaugh C, Aickin M. Fat or lean tissue mass: which one is the major determinant of bone mineral mass in healthy postmenopausal women? J Bone Miner Res. 1997;12:144–51.

    Article  PubMed  CAS  Google Scholar 

  38. Lindsay R, Cosman F, Herrington BS, Himmelstein S. Bone mass and body composition in normal women. J Bone Miner Res. 1992;7:55–63.

    Article  PubMed  CAS  Google Scholar 

  39. Janicka A, Wren TA, Sanchez MM, Dorey F, Kim PS, Mittelman SD, Gilsanz V. Fat mass is not beneficial to bone in adolescents and young adults. J Clin Endocrinol Metab. 2007;92:143–7.

    Article  PubMed  CAS  Google Scholar 

  40. Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr. 2001;139:509–15.

    Article  PubMed  CAS  Google Scholar 

  41. Blain H, Vuillemin A, Teissier A, Hanesse B, Guillemin F, Jeandel C. Influence of muscle strength and body weight and composition on regional bone mineral density in healthy women aged 60 years and over. Gerontology. 2001;47:207–12.

    Article  PubMed  CAS  Google Scholar 

  42. Hla MM, Davis JW, Ross PD, Wasnich RD, Yates AJ, Ravn P, Hosking DJ, McClung MR. A multicenter study of the influence of fat and lean mass on bone mineral content: evidence for differences in their relative influence at major fracture sites. Early Postmenopausal Intervention Cohort (EPIC) Study Group. Am J Clin Nutr. 1996;64:354–60.

    PubMed  CAS  Google Scholar 

  43. Glauber HS, Vollmer WM, Nevitt MC, Ensrud KE, Orwoll ES. Body weight versus body fat distribution, adiposity, and frame size as predictors of bone density. J Clin Endocrinol Metab. 1995;80:1118–23.

    Article  PubMed  CAS  Google Scholar 

  44. Warming L, Ravn P, Christiansen C. Visceral fat is more important than peripheral fat for endometrial thickness and bone mass in healthy postmenopausal women. Am J Obstet Gynecol. 2003;188:349–53.

    Article  PubMed  Google Scholar 

  45. Kuwahata A, Kawamura Y, Yonehara Y, Matsuo T, Iwamoto I, Douchi T. Non-weight-bearing effect of trunk and peripheral fat mass on bone mineral density in pre- and post-menopausal women. Maturitas. 2008;60:244–7.

    Article  PubMed  Google Scholar 

  46. Makovey J, Naganathan V, Sambrook P. Gender differences in relationships between body composition components, their distribution and bone mineral density: a cross-sectional opposite sex twin study. Osteoporos Int. 2005;16:1495–505.

    Article  PubMed  Google Scholar 

  47. Gilsanz V, Chalfant J, Mo AO, Lee DC, Dorey FJ, Mittelman SD. Reciprocal relations of subcutaneous and visceral fat to bone structure and strength. J Clin Endocrinol Metab. 2009;94:3387–93.

    Article  PubMed  CAS  Google Scholar 

  48. Bredella MA, Fazeli PK, Freedman LM, Calder G, Lee H, Rosen CJ, Klibanski A. Young women with cold-activated brown adipose tissue have higher bone mineral density and lower pref-1 than women without brown adipose tissue: a study in women with anorexia nervosa, women recovered from anorexia nervosa, and normal-weight women. J Clin Endocrinol Metab. 2012;97(4):E584–90.

    Article  PubMed  CAS  Google Scholar 

  49. Shen W, Chen J, Punyanitya M, Shapses S, Heshka S, Heymsfield SB. MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women. Osteoporos Int. 2007;18:641–7.

    Article  PubMed  CAS  Google Scholar 

  50. Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, Rosen CJ, Klibanski A, Miller KK. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity (Silver Spring). 2011;19:49–53.

    Article  CAS  Google Scholar 

  51. Frumar AM, Meldrum DR, Geola F, Shamonki IM, Tataryn IV, Deftos LJ, Judd HL. Relationship of fasting urinary calcium to circulating estrogen and body weight in postmenopausal women. J Clin Endocrinol Metab. 1980;50:70–5.

    Article  PubMed  CAS  Google Scholar 

  52. Peng XD, Xie H, Zhao Q, Wu XP, Sun ZQ, Liao EY. Relationships between serum adiponectin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in Chinese men. Clin Chim Acta. 2008;387:31–5.

    Article  PubMed  CAS  Google Scholar 

  53. Pistilli EE, Gordish-Dressman H, Seip RL, Devaney JM, Thompson PD, Price TB, Angelopoulos TJ, Clarkson PM, Moyna NM, Pescatello LS, Visich PS, Zoeller RF, Hoffman EP, Gordon PM. Resistin polymorphisms are associated with muscle, bone, and fat phenotypes in white men and women. Obesity (Silver Spring). 2007;15:392–402.

    Article  CAS  Google Scholar 

  54. Stanworth RD, Jones TH. Testosterone in obesity, metabolic syndrome and type 2 diabetes. Front Horm Res. 2009;37:74–90.

    Article  PubMed  CAS  Google Scholar 

  55. Wang C, Jackson G, Jones TH, Matsumoto AM, Nehra A, Perelman MA, Swerdloff RS, Traish A, Zitzmann M, Cunningham G. Low testosterone associated with obesity and the metabolic syndrome contributes to sexual dysfunction and cardiovascular disease risk in men with type 2 diabetes. Diabetes Care. 2011;34:1669–75.

    Article  PubMed  CAS  Google Scholar 

  56. Khosla S, Melton III LJ, Achenbach SJ, Oberg AL, Riggs BL. Hormonal and biochemical determinants of trabecular microstructure at the ultradistal radius in women and men. J Clin Endocrinol Metab. 2006;91:885–91.

    Article  PubMed  CAS  Google Scholar 

  57. Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S. A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res. 2008;23:205–14.

    Article  PubMed  Google Scholar 

  58. Lorentzon M, Swanson C, Andersson N, Mellstrom D, Ohlsson C. Free testosterone is a positive, whereas free estradiol is a negative, predictor of cortical bone size in young Swedish men: the GOOD study. J Bone Miner Res. 2005;20:1334–41.

    Article  PubMed  CAS  Google Scholar 

  59. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–3.

    PubMed  CAS  Google Scholar 

  60. Arunabh S, Pollack S, Yeh J, Aloia JF. Body fat content and 25-hydroxyvitamin D levels in healthy women. J Clin Endocrinol Metab. 2003;88:157–61.

    Article  PubMed  CAS  Google Scholar 

  61. Parikh SJ, Edelman M, Uwaifo GI, Freedman RJ, Semega-Janneh M, Reynolds J, Yanovski JA. The relationship between obesity and serum 1,25-dihydroxy vitamin D concentrations in healthy adults. J Clin Endocrinol Metab. 2004;89:1196–9.

    Article  PubMed  CAS  Google Scholar 

  62. Mason C, Xiao L, Imayama I, Duggan CR, Bain C, Foster-Schubert KE, Kong A, Campbell KL, Wang CY, Neuhouser ML, Li L, Jeffery W, Robien K, Alfano CM, Blackburn GL, McTiernan A. Effects of weight loss on serum vitamin D in postmenopausal women. Am J Clin Nutr. 2011;94:95–103.

    Article  PubMed  CAS  Google Scholar 

  63. Lauretani F, Bandinelli S, Russo CR, Maggio M, Di IA, Cherubini A, Maggio D, Ceda GP, Valenti G, Guralnik JM, Ferrucci L. Correlates of bone quality in older persons. Bone. 2006;39:915–21.

    Article  PubMed  CAS  Google Scholar 

  64. Lee AM, Anderson PH, Sawyer RK, Moore AJ, Forwood MR, Steck R, Morris HA, O’Loughlin PD. Discordant effects of vitamin D deficiency in trabecular and cortical bone architecture and strength in growing rodents. J Steroid Biochem Mol Biol. 2010;121:284–7.

    Article  PubMed  CAS  Google Scholar 

  65. Stein EM, Dempster DW, Udesky J, Zhou H, Bilezikian JP, Shane E, Silverberg SJ. Vitamin D deficiency influences histomorphometric features of bone in primary hyperparathyroidism. Bone. 2011;48:557–61.

    Article  PubMed  CAS  Google Scholar 

  66. Barbour KE, Zmuda JM, Horwitz MJ, Strotmeyer ES, Boudreau R, Evans RW, Ensrud KE, Gordon CL, Petit MA, Patrick AL, Cauley JA. The association of serum 25-hydroxyvitamin D with indicators of bone quality in men of Caucasian and African ancestry. Osteoporos Int. 2011;22:2475–85.

    Article  PubMed  CAS  Google Scholar 

  67. Bolland MJ, Grey AB, Ames RW, Horne AM, Gamble GD, Reid IR. Fat mass is an important predictor of parathyroid hormone levels in postmenopausal women. Bone. 2006;38:317–21.

    Article  PubMed  CAS  Google Scholar 

  68. Pitroda AP, Harris SS, Dawson-Hughes B. The association of adiposity with parathyroid hormone in healthy older adults. Endocrine. 2009;36:218–23.

    Article  PubMed  CAS  Google Scholar 

  69. Sukumar D, Partridge NC, Wang X, Shapses SA. The high serum monocyte chemoattractant protein-1 in obesity is influenced by high parathyroid hormone and not adiposity. J Clin Endocrinol Metab. 2011;96:1852–8.

    Article  PubMed  CAS  Google Scholar 

  70. Grey A, Mitnick MA, Shapses S, Ellison A, Gundberg C, Insogna K. Circulating levels of interleukin-6 and tumor necrosis factor-alpha are elevated in primary hyperparathyroidism and correlate with markers of bone resorption – a clinical research center study. J Clin Endocrinol Metab. 1996;81:3450–4.

    Article  PubMed  CAS  Google Scholar 

  71. Onishi T, Hruska K. Expression of p27Kip1 in osteoblast-like cells during differentiation with parathyroid hormone. Endocrinology. 1997;138:1995–2004.

    Article  PubMed  CAS  Google Scholar 

  72. Duan Y, De Luca V, Seeman E. Parathyroid hormone deficiency and excess: similar effects on trabecular bone but differing effects on cortical bone. J Clin Endocrinol Metab. 1999;84:718–22.

    Article  PubMed  CAS  Google Scholar 

  73. Charopoulos I, Tournis S, Trovas G, Raptou P, Kaldrymides P, Skarandavos G, Katsalira K, Lyritis GP. Effect of primary hyperparathyroidism on volumetric bone mineral density and bone geometry assessed by peripheral quantitative computed tomography in postmenopausal women. J Clin Endocrinol Metab. 2006;91:1748–53.

    Article  PubMed  CAS  Google Scholar 

  74. Shen L, Xie X, Su Y, Luo C, Zhang C, Zeng B. Parathyroid hormone versus bisphosphonate treatment on bone mineral density in osteoporosis therapy: a meta-analysis of randomized controlled trials. PLoS One. 2011;6:e26267.

    Article  PubMed  CAS  Google Scholar 

  75. Goode LR, Brolin RE, Chowdhury HA, Shapses SA. Bone and gastric bypass surgery: effects of dietary calcium and vitamin D. Obes Res. 2004;12:40–7.

    Article  PubMed  CAS  Google Scholar 

  76. Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J, Yoshikawa H, Shimomura I. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun. 2005;331:520–6.

    Article  PubMed  CAS  Google Scholar 

  77. Barbour KE, Zmuda JM, Boudreau R, Strotmeyer ES, Horwitz MJ, Evans RW, Kanaya AM, Harris TB, Cauley JA. The effects of adiponectin and leptin on changes in bone mineral density. Osteoporos Int. 2012;23(6):1699–710.

    Article  PubMed  CAS  Google Scholar 

  78. Tubic B, Magnusson P, Swolin-Eide D, Marild S. Relation between bone mineral density, biological markers and anthropometric measures in 4-year-old children: a pilot study within the IDEFICS study. Int J Obes (Lond). 2011;35 Suppl 1:S119–24.

    Article  CAS  Google Scholar 

  79. Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, Langefeld CD, Carr JJ, Bowden DW. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone. 2003;33:646–51.

    Article  PubMed  CAS  Google Scholar 

  80. Jurimae J, Jurimae T. Adiponectin is a predictor of bone mineral density in middle-aged premenopausal women. Osteoporos Int. 2007;18:1253–9.

    Article  PubMed  CAS  Google Scholar 

  81. Kontogianni MD, Dafni UG, Routsias JG, Skopouli FN. Blood leptin and adiponectin as possible mediators of the relation between fat mass and BMD in perimenopausal women. J Bone Miner Res. 2004;19:546–51.

    Article  PubMed  CAS  Google Scholar 

  82. Napoli N, Pedone C, Pozzilli P, Lauretani F, Ferrucci L, Incalzi RA. Adiponectin and bone mass density: the InCHIANTI study. Bone. 2010;47(6):1001–5.

    Article  PubMed  CAS  Google Scholar 

  83. Barbour KE, Zmuda JM, Boudreau R, Strotmeyer ES, Horwitz MJ, Evans RW, Kanaya AM, Harris TB, Bauer DC, Cauley JA. Adipokines and the risk of fracture in older adults. J Bone Miner Res. 2011;26:1568–76.

    Article  PubMed  CAS  Google Scholar 

  84. Biver E, Salliot C, Combescure C, Gossec L, Hardouin P, Legroux-Gerot I, Cortet B. Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96(9):2703–13.

    Article  PubMed  CAS  Google Scholar 

  85. Johansson H, Oden A, Lerner UH, Jutberger H, Lorentzon M, Barrett-Connor E, Karlsson MK, Ljunggren O, Smith U, McCloskey E, Kanis JA, Ohlsson C, Mellstrom D. High serum adiponectin predicts incident fractures in elderly men: osteoporotic fractures in men (MrOS) Sweden. J Bone Miner Res. 2012;27:1390–6.

    Article  PubMed  CAS  Google Scholar 

  86. Karsenty G. Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab. 2006;4:341–8.

    Article  PubMed  CAS  Google Scholar 

  87. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology. 1999;140:1630–8.

    Article  PubMed  CAS  Google Scholar 

  88. Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, Grey AB, Broom N, Myers DE, Nicholson GC, Reid IR. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol. 2002;175:405–15.

    Article  PubMed  CAS  Google Scholar 

  89. Blum M, Harris SS, Must A, Naumova EN, Phillips SM, Rand WM, Dawson-Hughes B. Leptin, body composition and bone mineral density in premenopausal women. Calcif Tissue Int. 2003;73:27–32.

    Article  PubMed  CAS  Google Scholar 

  90. Pasco JA, Henry MJ, Kotowicz MA, Collier GR, Ball MJ, Ugoni AM, Nicholson GC. Serum leptin levels are associated with bone mass in nonobese women. J Clin Endocrinol Metab. 2001;86:1884–7.

    Article  PubMed  CAS  Google Scholar 

  91. Yamauchi M, Sugimoto T, Yamaguchi T, Nakaoka D, Kanzawa M, Yano S, Ozuru R, Sugishita T, Chihara K. Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin Endocrinol (Oxf). 2001;55:341–7.

    Article  CAS  Google Scholar 

  92. Fujita Y, Watanabe K, Maki K. Serum leptin levels negatively correlate with trabecular bone mineral density in high-fat diet-induced obesity mice. J Musculoskelet Neuronal Interact. 2012;12:84–94.

    PubMed  CAS  Google Scholar 

  93. Hamrick MW, Pennington C, Newton D, Xie D, Isales C. Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone. 2004;34:376–83.

    Article  PubMed  CAS  Google Scholar 

  94. Cornish J, Callon KE, Bava U, Watson M, Xu X, Lin JM, Chan VA, Grey AB, Naot D, Buchanan CM, Cooper GJ, Reid IR. Preptin, another peptide product of the pancreatic beta-cell, is osteogenic in vitro and in vivo. Am J Physiol Endocrinol Metab. 2007;292:E117–22.

    Article  PubMed  CAS  Google Scholar 

  95. Bronsky J, Prusa R, Nevoral J. The role of amylin and related peptides in osteoporosis. Clin Chim Acta. 2006;373:9–16.

    Article  PubMed  CAS  Google Scholar 

  96. Clowes JA, Khosla S, Eastell R. Potential role of pancreatic and enteric hormones in regulating bone turnover. J Bone Miner Res. 2005;20:1497–506.

    Article  PubMed  CAS  Google Scholar 

  97. Davey RA, Moore AJ, Chiu MW, Notini AJ, Morris HA, Zajac JD. Effects of amylin deficiency on trabecular bone in young mice are sex-dependent. Calcif Tissue Int. 2006;78:398–403.

    Article  PubMed  CAS  Google Scholar 

  98. Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science. 1992;257:88–91.

    Article  PubMed  CAS  Google Scholar 

  99. Koh JM, Khang YH, Jung CH, Bae S, Kim DJ, Chung YE, Kim GS. Higher circulating hsCRP levels are associated with lower bone mineral density in healthy pre- and postmenopausal women: evidence for a link between systemic inflammation and osteoporosis. Osteoporos Int. 2005;16:1263–71.

    Article  PubMed  CAS  Google Scholar 

  100. Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature. 1986;319:516–8.

    Article  PubMed  CAS  Google Scholar 

  101. Mundy GR. Osteoporosis and inflammation. Nutr Rev. 2007;65:S147–51.

    Article  PubMed  Google Scholar 

  102. De BF, Rucci N, Del FA, Peruzzi B, Paro R, Longo M, Vivarelli M, Muratori F, Berni S, Ballanti P, Ferrari S, Teti A. Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal ­system. Arthritis Rheum. 2006;54:3551–63.

    Article  CAS  Google Scholar 

  103. Bhupathiraju SN, Alekel DL, Stewart JW, Hanson LN, Shedd KM, Reddy MB, Hanson KB, Van Loan MD, Genschel U, Koehler KJ. Relationship of circulating total homocysteine and C-reactive protein to trabecular bone in postmenopausal women. J Clin Densitom. 2007;10:395–403.

    Article  PubMed  Google Scholar 

  104. Rolland T, Boutroy S, Vilayphiou N, Blaizot S, Chapurlat R, Szulc P. Poor trabecular microarchitecture at the distal radius in older men with increased concentration of high-sensitivity C-reactive protein – the STRAMBO study. Calcif Tissue Int. 2012;90:496–506.

    Article  PubMed  CAS  Google Scholar 

  105. Brick DJ, Gerweck AV, Meenaghan E, Lawson EA, Misra M, Fazeli P, Johnson W, Klibanski A, Miller KK. Determinants of IGF1 and GH across the weight spectrum: from anorexia nervosa to obesity. Eur J Endocrinol. 2010;163:185–91.

    Article  PubMed  CAS  Google Scholar 

  106. Nam SY, Lee EJ, Kim KR, Cha BS, Song YD, Lim SK, Lee HC, Huh KB. Effect of obesity on total and free insulin-like growth factor (IGF)-1, and their relationship to IGF-binding protein (BP)-1, IGFBP-2, IGFBP-3, insulin, and growth hormone. Int J Obes Relat Metab Disord. 1997;21:355–9.

    Article  PubMed  CAS  Google Scholar 

  107. Frystyk J, Brick DJ, Gerweck AV, Utz AL, Miller KK. Bioactive insulin-like growth factor-I in obesity. J Clin Endocrinol Metab. 2009;94:3093–7.

    Article  PubMed  CAS  Google Scholar 

  108. Boonen S, Cheng XG, Nijs J, Nicholson PH, Verbeke G, Lesaffre E, Aerssens J, Dequeker J. Factors associated with cortical and trabecular bone loss as quantified by peripheral computed tomography (pQCT) at the ultradistal radius in aging women. Calcif Tissue Int. 1997;60:164–70.

    Article  PubMed  CAS  Google Scholar 

  109. Giustina A, Mazziotti G, Canalis E. Growth ­hormone, insulin-like growth factors, and the skeleton. Endocr Rev. 2008;29:535–59.

    Article  PubMed  CAS  Google Scholar 

  110. Costa JL, Naot D, Lin JM, Watson M, Callon KE, Reid IR, Grey AB, Cornish J. Ghrelin is an ­osteoblast mitogen and increases osteoclastic bone resorption in vitro. Int J Pept. 2011;2011:605193.

    PubMed  Google Scholar 

  111. Fukushima N, Hanada R, Teranishi H, Fukue Y, Tachibana T, Ishikawa H, Takeda S, Takeuchi Y, Fukumoto S, Kangawa K, Nagata K, Kojima M. Ghrelin directly regulates bone formation. J Bone Miner Res. 2005;20:790–8.

    Article  PubMed  CAS  Google Scholar 

  112. Maccarinelli G, Sibilia V, Torsello A, Raimondo F, Pitto M, Giustina A, Netti C, Cocchi D. Ghrelin regulates proliferation and differentiation of osteoblastic cells. J Endocrinol. 2005;184:249–56.

    Article  PubMed  CAS  Google Scholar 

  113. Kim SW, Her SJ, Park SJ, Kim D, Park KS, Lee HK, Han BH, Kim MS, Shin CS, Kim SY. Ghrelin stimulates proliferation and differentiation and inhibits apoptosis in osteoblastic MC3T3-E1 cells. Bone. 2005;37:359–69.

    Article  PubMed  CAS  Google Scholar 

  114. Woo DG, Lee BY, Lim D, Kim HS. Relationship between nutrition factors and osteopenia: effects of experimental diets on immature bone quality. J Biomech. 2009;42:1102–7.

    Article  PubMed  CAS  Google Scholar 

  115. Patsch JM, Kiefer FW, Varga P, Pail P, Rauner M, Stupphann D, Resch H, Moser D, Zysset PK, Stulnig TM, Pietschmann P. Increased bone resorption and impaired bone microarchitecture in short-term and extended high-fat diet-induced obesity. Metabolism. 2011;60:243–9.

    Article  PubMed  CAS  Google Scholar 

  116. Cao JJ, Sun L, Gao H. Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice. Ann N Y Acad Sci. 2010;1192:292–7.

    Article  PubMed  CAS  Google Scholar 

  117. Ionova-Martin SS, Wade JM, Tang S, Shahnazari M, Ager III JW, Lane NE, Yao W, Alliston T, Vaisse C, Ritchie RO. Changes in cortical bone response to high-fat diet from adolescence to adulthood in mice. Osteoporos Int. 2011;22(8):2283–93.

    Article  PubMed  CAS  Google Scholar 

  118. Lorincz C, Reimer RA, Boyd SK, Zernicke RF. High-fat, sucrose diet impairs geometrical and mechanical properties of cortical bone in mice. Br J Nutr. 2010;103:1302–8.

    Article  PubMed  CAS  Google Scholar 

  119. Zernicke RF, Salem GJ, Barnard RJ, Schramm E. Long-term, high-fat-sucrose diet alters rat femoral neck and vertebral morphology, bone mineral content, and mechanical properties. Bone. 1995;16:25–31.

    PubMed  CAS  Google Scholar 

  120. Hawkins J, Cifuentes M, Pleshko NL, Ambia-Sobhan H, Shapses SA. Energy restriction is associated with lower bone mineral density of the tibia and femur in lean but not obese female rats. J Nutr. 2010;140:31–7.

    Article  PubMed  CAS  Google Scholar 

  121. Gerbaix M, Metz L, Mac-Way F, Lavet C, Guillet C, Walrand S, Masgrau A, Linossier MT, Vico L, Daniel C. Impact of an obesogenic diet program on bone densitometry, micro architecture and metabolism in male rat. Lipids Health Dis. 2012;11:91.

    Article  PubMed  CAS  Google Scholar 

  122. Douard V, Suzuki T, Sabbagh Y, Lee J, Shapses S, Lin S, Ferraris RP. Dietary fructose inhibits lactation-induced adaptations in rat 1,25-(OH)(2)D(3) synthesis and calcium transport. FASEB J. 2012;26:707–21.

    Article  PubMed  CAS  Google Scholar 

  123. Tsanzi E, Light HR, Tou JC. The effect of feeding different sugar-sweetened beverages to growing female Sprague-Dawley rats on bone mass and strength. Bone. 2008;42:960–8.

    Article  PubMed  CAS  Google Scholar 

  124. Fried A, Manske SL, Eller LK, Lorincz C, Reimer RA, Zernicke RF. Skim milk powder enhances trabecular bone architecture compared with casein or whey in diet-induced obese rats. Nutrition. 2012;28:331–5.

    Article  PubMed  CAS  Google Scholar 

  125. Salamone LM, Cauley JA, Black DM, Simkin-Silverman L, Lang W, Gregg E, Palermo L, Epstein RS, Kuller LH, Wing R. Effect of a lifestyle intervention on bone mineral density in premenopausal women: a randomized trial. Am J Clin Nutr. 1999;70:97–103.

    PubMed  CAS  Google Scholar 

  126. Langlois JA, Mussolino ME, Visser M, Looker AC, Harris T, Madans J. Weight loss from maximum body weight among middle-aged and older white women and the risk of hip fracture: the NHANES I epidemiologic follow-up study. Osteoporos Int. 2001;12:763–8.

    Article  PubMed  CAS  Google Scholar 

  127. Ensrud KE, Fullman RL, Barrett-Connor E, Cauley JA, Stefanick ML, Fink HA, Lewis CE, Orwoll E. Voluntary weight reduction in older men increases hip bone loss: the osteoporotic fractures in men study. J Clin Endocrinol Metab. 2005;90:1998–2004.

    Article  PubMed  CAS  Google Scholar 

  128. Sukumar D, Ambia-Sobhan H, Zurfluh R, Schlussel Y, Stahl TJ, Gordon CL, Shapses SA. Areal and volumetric bone mineral density and geometry at two levels of protein intake during caloric restriction: a randomized, controlled trial. J Bone Miner Res. 2011;26:1339–48.

    Article  PubMed  CAS  Google Scholar 

  129. Riedt CS, Cifuentes M, Stahl T, Chowdhury HA, Schlussel Y, Shapses SA. Overweight postmenopausal women lose bone with moderate weight reduction and 1 g/day calcium intake. J Bone Miner Res. 2005;20:455–63.

    Article  PubMed  CAS  Google Scholar 

  130. Villalon KL, Gozansky WS, Van Pelt RE, Wolfe P, Jankowski CM, Schwartz RS, Kohrt WM. A losing battle: weight regain does not restore weight loss-induced bone loss in postmenopausal women. Obesity (Silver Spring). 2011;19(12):2345–50.

    Article  CAS  Google Scholar 

  131. Bleicher K, Cumming RG, Naganathan V, Travison TG, Sambrook PN, Blyth FM, Handelsman DJ, Le Couteur DG, Waite LM, Creasey HM, Seibel MJ. The role of fat and lean mass in bone loss in older men: findings from the CHAMP study. Bone. 2011;49:1299–305.

    Article  PubMed  Google Scholar 

  132. Nguyen TV, Sambrook PN, Eisman JA. Bone loss, physical activity, and weight change in elderly women: the Dubbo Osteoporosis Epidemiology Study. J Bone Miner Res. 1998;13:1458–67.

    Article  PubMed  CAS  Google Scholar 

  133. Shapses SA, Sukumar D. Bone metabolism in obesity and weight loss. Annu Rev Nutr. 2012;32:287–309.

    Article  PubMed  CAS  Google Scholar 

  134. Langlois JA, Harris T, Looker AC, Madans J. Weight change between age 50 years and old age is associated with risk of hip fracture in white women aged 67 years and older. Arch Intern Med. 1996;156:989–94.

    Article  PubMed  CAS  Google Scholar 

  135. Meyer HE, Tverdal A, Selmer R. Weight variability, weight change and the incidence of hip fracture: a prospective study of 39,000 middle-aged Norwegians. Osteoporos Int. 1998;8:373–8.

    Article  PubMed  CAS  Google Scholar 

  136. Mussolino ME, Looker AC, Madans JH, Langlois JA, Orwoll ES. Risk factors for hip fracture in white men: the NHANES I Epidemiologic Follow-up Study. J Bone Miner Res. 1998;13:918–24.

    Article  PubMed  CAS  Google Scholar 

  137. Wilsgaard T, Jacobsen BK, Ahmed LA, Joakimsen RM, Stormer J, Jorgensen L. BMI change is associated with fracture incidence, but only in non-smokers. The Tromso Study. Osteoporos Int. 2011;22:1237–45.

    Article  PubMed  CAS  Google Scholar 

  138. Omsland TK, Schei B, Gronskag AB, Langhammer A, Forsen L, Gjesdal CG, Meyer HE. Weight loss and distal forearm fractures in postmenopausal women: the Nord-Trondelag health study, Norway. Osteoporos Int. 2009;20:2009–16.

    Article  PubMed  CAS  Google Scholar 

  139. Shapses SA, Von Thun NL, Heymsfield SB, Ricci TA, Ospina M, Pierson Jr RN, Stahl T. Bone turnover and density in obese premenopausal women during moderate weight loss and calcium supplementation. J Bone Miner Res. 2001;16:1329–36.

    Article  PubMed  CAS  Google Scholar 

  140. Riedt CS, Schlussel Y, von Thun N, Ambia-Sobhan H, Stahl T, Field MP, Sherrell RM, Shapses SA. Premenopausal overweight women do not lose bone during moderate weight loss with adequate or higher calcium intake. Am J Clin Nutr. 2007;85:972–80.

    PubMed  CAS  Google Scholar 

  141. Redman LM, Rood J, Anton SD, Champagne C, Smith SR, Ravussin E. Calorie restriction and bone health in young, overweight individuals. Arch Intern Med. 2008;168:1859–66.

    Article  PubMed  Google Scholar 

  142. Uusi-Rasi K, Rauhio A, Kannus P, Pasanen M, Kukkonen-Harjula K, Fogelholm M, Sievanen H. Three-month weight reduction does not compromise bone strength in obese premenopausal women. Bone. 2010;46:1286–93.

    Article  PubMed  Google Scholar 

  143. Hamrick MW, Ding KH, Ponnala S, Ferrari SL, Isales CM. Caloric restriction decreases cortical bone mass but spares trabecular bone in the mouse skeleton: implications for the regulation of bone mass by body weight. J Bone Miner Res. 2008;23:870–8.

    Article  PubMed  CAS  Google Scholar 

  144. Talbott SM, Cifuentes M, Dunn MG, Shapses SA. Energy restriction reduces bone density and biomechanical properties in aged female rats. J Nutr. 2001;131:2382–7.

    PubMed  CAS  Google Scholar 

  145. Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S, Pinz I, Baron R, Rosen CJ, Bouxsein ML. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res. 2010;25:2078–88.

    Article  PubMed  Google Scholar 

  146. Cifuentes M, Advis JP, Shapses SA. Estrogen prevents the reduction in fractional calcium absorption due to energy restriction in mature rats. J Nutr. 2004;134:1929–34.

    PubMed  CAS  Google Scholar 

  147. Gozansky WS, Van Pelt RE, Jankowski CM, Schwartz RS, Kohrt WM. Protection of bone mass by estrogens and raloxifene during exercise-induced weight loss. J Clin Endocrinol Metab. 2005;90:52–9.

    Article  PubMed  CAS  Google Scholar 

  148. Turner RT, Iwaniec UT. Low dose parathyroid hormone maintains normal bone formation in adult male rats during rapid weight loss. Bone. 2011;48:726–32.

    Article  PubMed  CAS  Google Scholar 

  149. Berrigan D, Lavigne JA, Perkins SN, Nagy TR, Barrett JC, Hursting SD. Phenotypic effects of calorie restriction and insulin-like growth factor-1 treatment on body composition and bone mineral density of C57BL/6 mice: implications for cancer prevention. In Vivo. 2005;19:667–74.

    PubMed  CAS  Google Scholar 

  150. Pollock NK, Laing EM, Hamrick MW, Baile CA, Hall DB, Lewis RD. Bone and fat relationships in postadolescent black females: a pQCT study. Osteoporos Int. 2011;22:655–65.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue A. Shapses PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Shapses, S.A., Sukumar, D. (2013). The Hormonal Milieu in Obesity and Influences on the Trabecular, Cortical, and Geometric Properties of Bone. In: Burckhardt, P., Dawson-Hughes, B., Weaver, C. (eds) Nutritional Influences on Bone Health. Springer, London. https://doi.org/10.1007/978-1-4471-2769-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2769-7_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2768-0

  • Online ISBN: 978-1-4471-2769-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics