Skip to main content

Cerebral Blood Flow and Metabolism

  • Chapter
Care of the Critically Ill Patient
  • 890 Accesses

Abstract

The brain relies on adequate delivery of O2 and glucose to maintain oxidative glycolysis and so provide energy [36]. With a reduction in O2 delivery, compensatory mechanisms maintain the physiological milieu. When these mechanisms are exhausted the brain is vulnerable to further insult. Enhancement of these compensatory mechanisms where possible could be a further aim of intensive therapy. This requires measurement of cerebral blood flow (CBF) but the spatial and temporal resolution of available techniques is insufficient to allow routine clinical measurement of CBF [30] and cerebral metabolic activity. When such measurements do become available it may be possible to recognize pathophysiological processes, instigate appropriate treatment, and predict prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrup J (1982) Energy requiring cell functions in the ischaemic brain. J Neurosurg 56: 482–497

    Article  PubMed  CAS  Google Scholar 

  2. Bayliss WM (1902) On the local reactions of the arterial wall to changes in internal pressure. J Physiol 28:220– 231

    Google Scholar 

  3. Berne RM, Rubrio R, Curnish RR (1974) Release of adenosine from the ischaemic brain: effect of cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ Res 35: 262–271

    CAS  Google Scholar 

  4. Boisvert D, Pickard JD, Graham DI, Fitch W (1979) Delayed effects of subarachnoid haemorrhage on cerebral metabolism and the cerebrovascular response to hypercapnia in the primate. J Neurol Neurosurg Psychiatry 42: 892–898

    Article  PubMed  CAS  Google Scholar 

  5. Blomsjo M (1984) Hemisphere cross talk and signal overlapping in bilateral regional cerebral blood flow measurements using 133Xe. Eur J Nucl Med 9: 1–5

    Article  Google Scholar 

  6. Borgstrom L, Johansson H, Siesjo BK (1975) The relationship between arterial pO2 and cerebral blood flow in hypoxic hypoxia. Acta Physiol Scand 93:423–432

    Google Scholar 

  7. Brodersen P, Paulson OB, Bolwig TG, Rogon ZE, Rafaelsen OJ, Lassen NA (1973) Cerebral hyperaemia in electrically induced seizures. Arch Neurol 28:334– 338

    Google Scholar 

  8. Brown MM, Wade JPH, Marshall J (1985) Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow. Brain 108: 81–94

    Article  PubMed  Google Scholar 

  9. Brown MM, Wade JPH, Ross Russell RW, Bishop C (1986) Reactivity of the cerebral circulation in patients with occlusive disease. J Neurol Neurosurg Psychiatry 49: 890–904

    Google Scholar 

  10. Burrows G (1846) On disorders of the cerebral circulation and on the connection between affections of the brain and disease of the heart. Longman, London

    Google Scholar 

  11. Chen RYZ, Fan F, Kim S, Jan KM, Usami S, Chien S (1980) Tissue-blood partition coefficient for xenon: temperature and haematocrit dependence. J Appl Physiol 49: 178–183

    PubMed  CAS  Google Scholar 

  12. Cohen PJ, Alexander SC, Smith TC, Reivich M, Wollman H (1967) Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J Appl Physiol 23: 183–189

    PubMed  CAS  Google Scholar 

  13. Cruz J, Miner ME (1986) Modulating cerebral oxygen delivery and extraction in head injured patients. In: Miner ME, Wagner KA (eds) Neural trauma, Vol 1. Butterworth, Mass. pp 55–73

    Google Scholar 

  14. Eckenhoff JE, Enderby GE, Larson, A, Davies R, Judevine DF (1963) Human cerebral circulation during deliberate hypotension and head up tilt. J Appl Physiol 18: 1130–1138

    PubMed  CAS  Google Scholar 

  15. Enevoldsen E, Jensen F (1978) Autoregulation and C02 responses of cerebral blood flow in patients with acute severe head injury. J Neurosurg 44: 191–214

    Google Scholar 

  16. Enevoldsen E, Cold G, Jensen FT, Malmros R (1976) Dynamic changes in regional CBF, intraventricular pressure, CSF pH and lactate levels during the acute phase of head injury. J Neurosurg 44: 191–214

    Google Scholar 

  17. Ernsting J (1966) The effects of hypoxia upon human performance and the electroencephalogram. In: Payne JP, Hill DW (eds) Oxygen measurement in blood and tissues. Churchill, London, pp 245–259

    Google Scholar 

  18. Fieschi C, Agnoli A, Battisti N, Bozzao L, Prencipe M (1969) Derangement of regional cerebral blood flow and its regulatory mechanisms in acute cerebrovascular lesions. Neurology 18: 1166–1179

    Google Scholar 

  19. Fieschi C, Battistini N, Beduschi A, Bosseli L, Rossanda M (1974) Regional cerebral blood flow and intraventricular pressure in acute head injuries. J Neurol Neurosurg Psychiatry 37: 1378–1388

    Article  PubMed  CAS  Google Scholar 

  20. Fitch W, Mackenzie ET, Harper AM (1975) Effects of decreasing arterial blood pressure on cerebral blood flow in the baboon. Circ Res 27: 550–557

    Google Scholar 

  21. Folbergrova J, MacMillan V, Siesjo BK (1972) The effect of moderate and marked hypercapnia upon the energy state and upon cytoplasmic NADH (NAD4 ratio of the rat brain). J Neurochem 19: 2497–2505

    Article  PubMed  CAS  Google Scholar 

  22. Fujishima M, Scheinberg P, Busto R, Reinmuth O (1971) The relation between cerebral oxygen consumption and cerebral vascular reactivity to carbon dioxide. Stroke 2: 251–257

    Article  PubMed  CAS  Google Scholar 

  23. Galbraith JG (1967) Monitoring of brain oxygenation during carotid ligation. J Neurosurg 27: 102–104

    Article  Google Scholar 

  24. Garlick R, Bihari D (1987) The use of intermittent and continuous recordings of jugular venous bulb oxygen saturation. Scand J Clin Lab Invest 47 (Suppl 188):47– 52

    Google Scholar 

  25. Gautier JC (1976) Cerebral ischaemia in hypertension. In: Ross Russell RW (ed) Cerebral arterial disease. Churchill Livingstone, Edinburgh, pp 181–209

    Google Scholar 

  26. Gibbs EL, Lennox WG, Nims LF, Gibbs FA (1942) Arterial and cerebral venous blood: arterial venous differences in man. J Biol Chem 144: 325–332

    CAS  Google Scholar 

  27. Gotoh F, Maramatsu F, Fukuuehi Y, Amano T (1973) Dual control of cerebral circulation. Separate sites of action in autoregulation and chemical control. Stroke 4: 327–331

    Google Scholar 

  28. Haggendal E, Winson I (1975) The influence of arterial carbon dioxide tension on the cerebrovascular response to arterial hypoxia and to haemodilution. Acta Anaesth Scand 19: 134–145

    Article  PubMed  CAS  Google Scholar 

  29. Hagstadius S, Risberg J (1983) The effects of normal ageing on the rCBF during resting and functional activation. rCBF Bull 6: 116–120

    Google Scholar 

  30. Halsey JH, Nakai K, Wariyar B (1981) Sensitivity of rCBF to focal lesions. Stroke 2: 631–635

    Article  Google Scholar 

  31. Harper AM (1966) Autoregulation of cerebral blood flow: influence of the arterial blood pressure on the blood flow through the cerebral cortex. J Neurol Neurosurg Psychiatry 29: 398–403

    Article  PubMed  CAS  Google Scholar 

  32. Harper AM, Desmukh VD, Rowan JO, Jennett WB (1972) The influence of the sympathetic nervous system on cerebral blood flow. Arch Neurol 27: 1–6

    Article  PubMed  CAS  Google Scholar 

  33. Harper AM, Glass HI (1965) Effects of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressures. J Neurol Neurosurg Psychiatry 28: 449–452

    Article  PubMed  CAS  Google Scholar 

  34. Harper AM, Desmukh VD, Rowan JO, Jennett WB (1972) The influence of sympathetic nervous system on cerebral blood flow. Arch Neurol 27: 1–6

    Article  PubMed  CAS  Google Scholar 

  35. Heuser D, Guggenberger H (1985) Ionic changes in brain ischaemia and alterations produced by drugs. Br J Anaesth 57: 23–33

    Article  PubMed  CAS  Google Scholar 

  36. Himwich HE, Nahum LH (1929) Respiratory quotient of the brain. Am J Physiol 90: 389–390

    Google Scholar 

  37. Hoedt-Rasmussen K, Skinhoj E, Paulson O et al. (1967) Regional cerebral blood flow in acute apoplexy: the “luxury perfusion syndrome” of brain tissue. Arch Neurol 17: 271–281

    Article  PubMed  CAS  Google Scholar 

  38. Hossmann KA (1982) Treatment of cerebral ischaemia. J Cereb Blood Flow Metab 2: 275–298

    Article  PubMed  CAS  Google Scholar 

  39. Ingvar DH (1973) Regional cerebral blood flow in focal cortical epilepsy. Stroke 4: 359–360

    Article  Google Scholar 

  40. Ingvar DH (1976) Functional landscapes of the dominant hemisphere. Brain Res 107: 181–197

    Article  PubMed  CAS  Google Scholar 

  41. Ingvar DH, Lassen NA (1961) Quantitative determination of regional cerebral blood flow in man. Lancet ii: 806

    Google Scholar 

  42. Jawad K, Miller JD, Fitch W, Barker J (1976) Measurement of jugular venous blood gases for prediction of brain ischaemia following carotid ligation. Eur Neurol 14: 43–52

    Article  PubMed  CAS  Google Scholar 

  43. Jones JV, Fitch W, Mackenzie ET, Strandgaard S, Harper AM (1976) Lower limit of cerebral blood flow autoregulation in experimental renovascular hypertension in the baboon. Circ Res 39: 555–557

    PubMed  CAS  Google Scholar 

  44. Kennedy C, Sokoloff L (1957) An adaptation of the nitrous oxide method to the study of the cerebral circulation in children: normal value for cerebral blood flow and cerebral metabolic rate in childhood. J Clin Invest 36: 1130–1137

    Article  PubMed  CAS  Google Scholar 

  45. Kety SS, Schmidt CF (1945) The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Physiol 143: 53–66

    CAS  Google Scholar 

  46. Kety SS, Schmidt CF (1946) The effects of active and passive hyperventilation on cerebral blood flow, cerebral oxygen consumption, cardiac output and blood pressure of normal young men. J Clin Invest 15:107– 119

    Google Scholar 

  47. Kety SS, Schmidt CF (1948) The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumptions of normal young men. J Clin Invest 27: 484–491

    Article  CAS  Google Scholar 

  48. Kety SS (1957) The general metabolism of the brain in vivo. In: Richter D (ed) Metabolism of the nervous system. Pergamon, New York, pp 221–236

    Google Scholar 

  49. Kety SS, King BD, Horvath SM, Jeffers WA, Hafkenshiel JH (1950) The effects of acute reduction in blood pressure by means of differential spinal sympathetic block on the cerebral circulation of hypertensive patients. J Clin Invest 29: 402–407

    Article  PubMed  CAS  Google Scholar 

  50. Klatzo I (1985) Brain oedema following brain ischaemia and the influence of therapy. Br J Anaesth 57: 18–22

    Article  PubMed  CAS  Google Scholar 

  51. Kogure K, Scheinberg P, Reinmuth OM, Fujishima M, Busto R (1970) Mechanisms of cerebral vasodilation in hypoxia. J Appl Physiol 29: 223–229

    PubMed  CAS  Google Scholar 

  52. Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum I, Patterson JL (1978) Responses of cerebral arteries and arterioles to acute hypotension and hypertension Am J Physiol 234: 371–383

    Google Scholar 

  53. Kuschinsky W, Wahl M (1978) Local chemical and neurogenic regulation of cerebral vascular resistance. Physiol Rev 58: 656–689

    PubMed  CAS  Google Scholar 

  54. Kuschinsky W, Wahl M, Bosse O, Thurak K (1972) Perivascular potassium and pH as determinants of local arterial diameter in cats. Circ Res 31: 240–247

    PubMed  CAS  Google Scholar 

  55. Larson CP, Ehrenfeld WK, Wade G, Wylie EJ (1967) Jugular venous oxygen saturation as an index of the adequacy of cerebral oxygenation. Surgery 62: 31–39

    Google Scholar 

  56. Lassen NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39: 183–233

    PubMed  CAS  Google Scholar 

  57. Lassen NA (1966) The luxury perfusion syndrome and its possible relation to acute metabolic acidosis writhin the brain. Lancet ii: 1113–1115

    Google Scholar 

  58. Lassen NA (1968) Brain extracellular pH: the main factor controlling cerebral blood flow. Scand J Clin Lab Invest 22: 247

    Article  PubMed  CAS  Google Scholar 

  59. Lassen NA (1974) Control of cerebral circulation in health and disease. Circ Res 27: 550–557

    Google Scholar 

  60. Lassen NA, Lane MH (1961) Validity of internal jugular blood for study of cerebral blood flow and metabolism. J Appl Physiol 16: 313

    PubMed  CAS  Google Scholar 

  61. Lassen NA, Henricksen L, Paulson O (1981) Regional cerebral blood flow in stroke by 133Xenon inhalation and emission tomography. Stroke 12: 284–288

    Article  PubMed  CAS  Google Scholar 

  62. Lebrun-Grundie P, Baron JC, Soussaline F, Loch C, Sastre J, Bousser MG (1983) Coupling between regional blood flow and oxygen utilization in the normal human brain: a study with positron emission tomography and 15oxygen. Arch Neurol 15: 230–236

    Article  Google Scholar 

  63. Lennox WG, Gibbs EL (1932) The blood flow in the brain and leg of man and changes induced by alteration of blood bases. J Clin Invest 11: 1155

    Article  PubMed  CAS  Google Scholar 

  64. Mackenzie ET, Strandgaard S, Graham DI, Jones JV, Harper AM, Farar JK (1976) Effects of acutely induced hypertension in cats on pial arterial calibre, local cerebral blood flow and the blood-brain barrier. Circ Res 39: 33–41

    PubMed  CAS  Google Scholar 

  65. Mallett BL, Veall N (1965) The measurement of regional cerebral clearance rates in man using xenon- 133 inhalation and extracranial recording. Clin Sei 29: 179–191

    CAS  Google Scholar 

  66. Maximilian V (1980) Cerebral haemodynamic response to mental activation in normo- and hypercapnia. Stroke 11: 342–347

    Article  PubMed  CAS  Google Scholar 

  67. McDowall DG (1966) Interrelationships between blood oxygen tensions and cerebral blood flow. In: Payne JP, Hill DW (eds) Oxygen measurements in blood and tissues. Churchill, London, pp 205–219

    Google Scholar 

  68. McDowall DT (1976) Monitoring the brain. Anesthesiology 45: 117–134

    Article  PubMed  CAS  Google Scholar 

  69. Melamed E, Lavy S, Bentin S, Cooper G, Rinot Y (1980) Reduction in regional cerebral blood flow during normal ageing in man. Stroke 11: 31–35

    Article  PubMed  CAS  Google Scholar 

  70. Meldrum B, Evans M, Griffiths T, Simon R (1985) Ischaemic brain damage: the role of excitatory activity and of calcium entry. Br J Anaesth 57: 44–46

    Article  PubMed  CAS  Google Scholar 

  71. Mendelow AD, Teasdale GM, Russell T, Flood J, Patterson J, Murray GD (1985) Effect of mannitol on cerebral blood flow and perfusion pressure in human head injury. J Neurosurg 63: 43–48

    Article  PubMed  CAS  Google Scholar 

  72. Messeter K, Nordström C-H, Sundbärg G, Algotsson L, Ryding E (1986) Cerebral haemodynamics in patients with acute severe head trauma. J Neurosurg 64: 231–237

    Article  PubMed  CAS  Google Scholar 

  73. Meyer JS, Gotoh F, Ebihara S (1966) Influence of cerebrovascular disease and state of consciousness on cerebral metabolism. J Am Geriatr Soc 14: 205–220

    PubMed  CAS  Google Scholar 

  74. Meyer JS et al. (1971) Clinical prognosis correlated with hemispheric blood flow in cerebral infarction. Stroke 2: 383–394

    Article  PubMed  CAS  Google Scholar 

  75. Meyer JS, Sakai F, Naritomi H, Grant F (1978) Normal and abnormal patterns of cerebrovascular reserve tested by 133Xe inhalation. Arch Neurol 35: 350–359

    Article  PubMed  CAS  Google Scholar 

  76. Michenfelder JC, Theye RA (1969) The effects of profound hypocapnia and dilutional anaemia on canine cerebral metabolism and blood flow. Anesthesiology 31: 449–457

    Article  PubMed  CAS  Google Scholar 

  77. Myerson A, Halloran RD, Hirsch HL (1927) Technique for obtaining blood from the internal jugular vein and internal carotid artery. Arch Neurol Psychiatry 17: 807

    Google Scholar 

  78. Nelson D, Fazekas JF (1956) Cerebral blood flow in polycythaemia vera. Arch intern Med 98: 328–331

    Article  Google Scholar 

  79. Obrist WD, Gennarelli TA, Segawa H, Dolinskas CA, Langfitt TW (1979) Relation of cerebral blood flow to neurological status and outcome in head injured patients. J Neurosurg 31: 292–300

    Google Scholar 

  80. Olesen J, Paulson OB, Lassen NA (1971) Regional cerebral blood flow in man determined by the initial slope of the clearance of intraarterially injected 133Xe. Stroke 2: 519–540

    Article  PubMed  CAS  Google Scholar 

  81. Overgaard J, Tweed WA (1974) Cerebral circulation after head injury. Part V. cerebral blood flow and its regulation after closed head injury with emphasis on clinical correlations. J Neurosurg 41: 531–541

    Google Scholar 

  82. Overgaard J, Mosdal C, Tweed W (1981) Cerebral circulation after head injury. Part 3: does reduced cerebral blood flow determine recovery of brain function after blunt head injury? J Neurosurg 55: 63–74

    Article  PubMed  CAS  Google Scholar 

  83. Paulson OB, Lassen NA, Skinhj E (1970) Regional cerebral blood flow in apoplexy without arterial occlusion. Neurology 21: 125–138

    Google Scholar 

  84. Perlmutter JS, Powers WJ, Herscovitch P, Fox PT, Raichle ME (1987) Regional asymmetries of cerebral blood flow, blood volume and oxygen utilisation and oxygen extraction in normal subjects. J Cereb Blood Flow Metab 7: 64–67

    Article  PubMed  CAS  Google Scholar 

  85. Phelps ME, Mazziotta JC, Huang SC (1982) Study of cerebral function with positron computed tomography. J Cereb Blood Flow Metab 2: 113–162

    Article  PubMed  CAS  Google Scholar 

  86. Pickard JD, Boisvert DPJ, Graham DI, Fitch W (1979) Late effects of subarachnoid haemorrhage on the response of the primate cerebral circulation to drug induced changes in arterial blood pressure. J Neurol Neurosurg Psychiatry 42: 899–903

    Article  PubMed  CAS  Google Scholar 

  87. Plum F, Posner JB, Troy B (1968) Cerebral metabolic and circulatory responses to induced convulsions in animals. Arch Neurol 18: 1–13

    Article  PubMed  CAS  Google Scholar 

  88. Risberg J, Halsey JH, Wills EL, Wilson EM (1975) Hemispheric specialization in normal man studied by bilateral measurements of the regional cerebral blood flow: a study with the 133Xe technique. Brain 98:511– 524

    Google Scholar 

  89. Roy CS, Sherrington CS (1890) On the regulation of the blood supply to the brain. J Physiol 11: 85–108

    PubMed  CAS  Google Scholar 

  90. Sengupta D, Harper M, Jennett B (1973) Effect of carotid ligation on cerebral blood flow in baboons. 1. Response to altered PaCO2. J Neurol Neurosurg Psychiatry 36:736– 741

    Google Scholar 

  91. Sengupta D, Harper M, Jennett B (1974) Effect of carotid ligation on cerebral blood flow in baboons. 2. Response to hypoxia and haemorrhagic hypotension. J Neurol Neurosurg Psychiatry 37: 578–584

    Google Scholar 

  92. Severinghaus JW, Lassen N (1967) Step hypocapnia to separate arterial from tissue pCO2 in the regulation of cerebral blood flow. Circ Res 20: 272–278

    PubMed  CAS  Google Scholar 

  93. Shimoyo S, Scheinberg P, Kogure K, Reinmuth OM (1968) The effects of graded hypoxia upon transient cerebral blood flow and oxygen consumption. Neurology 18: 127–133

    Google Scholar 

  94. Siesjö BK (1984) Cerebral circulation and metabolism. J Neurosurg 60: 883–908

    Article  PubMed  Google Scholar 

  95. Smith ML, Kagstom F, Siesjö BK (1983) Local cerebral blood flow in the rat during hypercapnia and hypoxia. Acta Physiol Scand 118: 439–440

    Article  PubMed  CAS  Google Scholar 

  96. Sokoloff L, Mangold R, Wechsler RL, Kennedy C, Kety SS (1955) The effect of mental arithmetic on cerebral circulation and metabolism.J Clin Invest 34: 1101–1108

    Article  CAS  Google Scholar 

  97. Sokoloff L (1981) Localization of functional activity in the central nervous system by measurements of glucose utilization with radioactive deoxyglucose. J Cereb Blood Flow Metab 1: 7–36

    Article  PubMed  CAS  Google Scholar 

  98. Strandgaard S (1976) Autoregulation of cerebral blood flow in hypertensive patients: the modifying influence of prolonged antihypertensive treatment to the tolerance of acute drug induced hypotension. Circulation 53: 720–727

    PubMed  CAS  Google Scholar 

  99. Symon L (1985) Flow thresholds in brain ischaemia and the effects of drugs. Br Anaesth 57: 34–43

    Article  CAS  Google Scholar 

  100. Thomas DJ, du Boulay GH, Marshall J, Pearson TC, Ross Russell RW, Symon L, Wetherley-Main G, Zilkha E (1977) Effect of haematocrit on cerebral blood flow in man. Lancet ii: 941–943

    Google Scholar 

  101. Tweed WA, Lee J, Beckstead JE, Makeen WJ (1977) Serial changes in cerebral blood flow and metabolism following general anoxia in man. Acta Neurol Scand Suppl 64: 132–133

    PubMed  CAS  Google Scholar 

  102. Waltz AG (1970) Effect of PaCO2 on blood flow and microvasculature of the ischaemic and non-ischaemic cerebral cortex. Stroke 1: 27–37

    Article  PubMed  CAS  Google Scholar 

  103. Waltz AG, Sundt TM, Michenfelder JD (1971) Cerebral blood flow, jugular venous pO2 and lactate concentration and arteriovenous oxygen content during carotid endarterectomy. Eur Neurol 6: 346–349

    Article  PubMed  Google Scholar 

  104. Wassermann AJ, Patterson JL (1961) The cerebral vascular response to reduction in arterial carbon dioxide tension. J Clin Invest 40: 1297–1303

    Article  Google Scholar 

  105. Wilson EM, Halsey JH, Vitek JJ (1972) Validation of jugular venous flow as an index of total cerebral blood flow. Stroke 3: 300–321

    Article  PubMed  CAS  Google Scholar 

  106. Yamamoto M, Meyer JS, Sakai F, Yamaguchi F (1980) Ageing and cerebral vasodilator response to hypercarbia. Arch Neurol 37: 489–496

    Article  PubMed  CAS  Google Scholar 

  107. Zierler K (1961) Theory of the use of arteriovenous concentration differences for measuring metabolism in steady and non-steady states. J Clin Invest 40:2111– 2125

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London Limited

About this chapter

Cite this chapter

Garlick, R.E. (1992). Cerebral Blood Flow and Metabolism. In: Tinker, J., Zapol, W.M. (eds) Care of the Critically Ill Patient. Springer, London. https://doi.org/10.1007/978-1-4471-3400-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3400-8_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3402-2

  • Online ISBN: 978-1-4471-3400-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics