Skip to main content

Clinical Implications of the Vascular Laboratory in the Diagnosis of Peripheral Arterial Disease

  • Chapter
  • First Online:
Noninvasive Vascular Diagnosis

Abstract

Our understanding of the pathophysiology, clinical manifestations, and natural history of peripheral vascular disorders must constantly be coupled with an appreciation of current diagnostic and therapeutic tools (noninvasive vascular testing, CTA, magnetic resonance angiography, conventional angiography, and angioplasty/stenting). This chapter will provide an entry point into clinical problem solving by considering the areas of screening, assessment prior to and immediately after intervention, surveillance (long-term, usually after intervention), and certain special areas of the peripheral arterial system. These include: selection of arterial reconstruction, healing response, amputation sites, compression syndromes, penile circulation, upper extremity ischemia, arteriovenous malformation, hemodialysis access graft, and arterial aneurysms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weitz JI, Byrne J, Clagett GP, et al. Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: a critical review. Circulation. 1996;94:3026–49.

    PubMed  CAS  Google Scholar 

  2. AbuRahma AF. Noninvasive assessment of critical leg ischemia. In: Bartolucci R, Battaglia L, D’Andrea V, De Antoni E, editors. Critical lower limb ischemia – principles and practice. Rome: Nuova Editrice Grafica; 2002. p. 99–114.

    Google Scholar 

  3. Feigelson HS, Criqui MH, Fronek A, et al. Screening for peripheral arterial disease: the sensitivity, specificity, and predictive value of noninvasive tests in a defined population. Am J Epidemiol. 1994;140:526–34.

    PubMed  CAS  Google Scholar 

  4. Ray SA, Srodon PD, Taylor RS, et al. Reliability of ankle: brachial pressure index measurement by junior doctors. Br J Surg. 1994;81:188–90.

    PubMed  CAS  Google Scholar 

  5. Kravos A, Bubnic-Sotosek K. Ankle-brachial index screening for peripheral artery disease in asymptomatic patients between 50 and 70 years of age. J Int Med Res. 2009;37:1611–9.

    PubMed  Google Scholar 

  6. Mourad JJ, Cacoub P, Collet JP, Becker F, Pinel JF, Huet D, Sevestre-Pietri MA, Priollet P, on behalf of the ELLIPSE Scientific Committee and Study Investigators. Screening of unrecognized peripheral arterial disease (PAD) using ankle-brachial index in high cardiovascular risk patients free from symptomatic PAD. J Vasc Surg. 2009;50:572–80.

    PubMed  Google Scholar 

  7. McDermott MM, Ferrucci L, Guralnik JM, Dyer AR, Liu K, Pearce WH, Clark E, Liao Y, Criqui MH. The ankle-brachial index is associated with the magnitude of impaired walking endurance among men and women with peripheral arterial disease. Vasc Med. 2010;15:251–7.

    PubMed  Google Scholar 

  8. AbuRahma AF, Diethrich EB. The Doppler testing in peripheral vascular occlusive disease. Surg Gynecol Obstet. 1980;150:26–8.

    PubMed  CAS  Google Scholar 

  9. Raines JK, Darling RC, Buth J, et al. Vascular laboratory criteria for the management of peripheral vascular disease of the lower extremities. Surgery. 1976;79:21–9.

    PubMed  CAS  Google Scholar 

  10. Toursarkissian B, Mejia A, Smilanich RP, Schoolfield J, Shireman PK, Sykes MT. Noninvasive localization of infrainguinal arterial occlusive disease in diabetics. Ann Vasc Surg. 2001;15:73–8.

    PubMed  CAS  Google Scholar 

  11. Holland T. Utilizing the ankle brachial index in clinical practice. Ostomy Wound Manage. 2002;48:38–40.

    PubMed  Google Scholar 

  12. Adam DJ, Naik J, Hartshorne T, Bello M, London NJ. The diagnosis and management of 689 chronic leg ulcers in a single-visit assessment clinic. Eur J Vasc Endovasc Surg. 2003;25:462–8.

    PubMed  CAS  Google Scholar 

  13. AbuRahma AF, Khan S, Robinson PA. Selective use of segmental Doppler pressures and color duplex imaging in the localization of arterial occlusive disease of the lower extremity. Surgery. 1995;118:496–503.

    PubMed  CAS  Google Scholar 

  14. Kempczinski RF. Segmental volume plethysmography: the pulse volume recorder. In: Kempczinski RF, Yao JST, editors. Practical noninvasive vascular diagnosis. Chicago: Year Book Medical Publishers; 1982. p. 105–17.

    Google Scholar 

  15. Koelemay MJ, Legemate DA, de Vos H, van Gurp AJ, Balm R, Reekers JA, Jacobs MJ. Duplex scanning allows selective use of arteriography in the management of patients with severe lower leg arterial disease. J Vasc Surg. 2001;34:661–7.

    PubMed  CAS  Google Scholar 

  16. Strandness Jr DE, Stahler C. Arteriosclerosis obliterans. Manner and rate of progression. JAMA. 1966;196:1–4.

    PubMed  Google Scholar 

  17. Wilson SE, Schwartz I, Williams RA, et al. Occlusion of the superficial femoral artery: what happens without operation. Am J Surg. 1980;140:112–8.

    PubMed  CAS  Google Scholar 

  18. Paaske WP, Tonnesen KH. Prognostic significance of distal blood pressure measurements in patients with severe ischemia. Scand J Thorac Cardiovasc Surg. 1980;14:105–8.

    PubMed  CAS  Google Scholar 

  19. Nicoloff AD, Taylor Jr LM, Sexton GJ, Schuff RA, Edwards JM, Yeager RA, Landry GJ, Moneta GL, Porter JM, Hemocysteine and Progression of Atherosclerosis Study Investigators. Relationship between site of initial symptoms and subsequent progression of disease in a prospective study of atherosclerosis progression in patients receiving long-term treatment for symptomatic peripheral arterial disease. J Vasc Surg. 2002;35:38–46.

    PubMed  Google Scholar 

  20. Prineas RJ, Harland WR, Janzon L, et al. Recommendations for use of noninvasive methods to detect atherosclerotic peripheral arterial disease – in population studies. Circulation. 1982;65:1561A–6.

    PubMed  CAS  Google Scholar 

  21. Janzon L, Bergentz SE, Ericsson BF, et al. The arm-ankle pressure gradient in relation to cardiovascular risk factors in intermittent claudication. Circulation. 1981;63:1339–41.

    PubMed  CAS  Google Scholar 

  22. Beach KW, Brunzell JD, Strandness Jr DE. Prevalence of severe arteriosclerosis obliterans in patients with diabetes mellitus. Arteriosclerosis. 1982;2:275–80.

    PubMed  CAS  Google Scholar 

  23. Criqui MH, Fronek A, Barrett-Connor E, et al. The prevalence of peripheral arterial disease in a defined population. Circulation. 1985;71:510–5.

    PubMed  CAS  Google Scholar 

  24. Hiatt WR, Marshall JA, Baxter J, et al. Diagnostic methods for peripheral arterial disease in the San Luis Valley diabetes study. J Clin Epidemiol. 1990;43:597–606.

    PubMed  CAS  Google Scholar 

  25. McLafferty RB, Moneta GL, Taylor LM, et al. Ability of ankle-brachial index to detect lower extremity atherosclerotic disease progression. Arch Surg. 1997;132:836–41.

    PubMed  CAS  Google Scholar 

  26. Gundersen J. Segmental measurements of systolic blood pressure in the extremities including the thumb and the great toe. Acta Chir Scand. 1972;426:1–9.

    CAS  Google Scholar 

  27. Postlethwaite JC, Dormandy JA. Results of ankle systolic pressure measurements in patients with intermittent claudication being treated with clofibrate. Ann Surg. 1975;181:799–802.

    PubMed  CAS  Google Scholar 

  28. Quick CR, Cotton LT. The measured effect of stopping smoking on intermittent claudication. Br J Surg. 1982;69:S24–6.

    PubMed  Google Scholar 

  29. Kempczinski RF, Buckley CJ, Darling RC. Vascular insufficiency secondary to ergotism. Surgery. 1976;79:597–600.

    PubMed  CAS  Google Scholar 

  30. Reich LM, Heiss G, Boland LL, Hirsch AT, Wu K, Folsom AR. Ankle-brachial index and hemostatic markers in the atherosclerosis risk in communities (ARIC) study cohort. Vasc Med. 2007;12:267–73.

    PubMed  Google Scholar 

  31. Li X, Luo Y, Xu Y, Li J, Hu D. Relationship of ankle-brachial index with all-cause mortality and cardiovascular mortality after a 3-year follow-up: the China ankle-brachial index cohort study. J Hum Hyperts. 2010;24:111–6.

    CAS  Google Scholar 

  32. Fowkes FGR, Price JF, Stewart MCW, Butcher I, Leng GC, Pell AC, Sandercock PAD, Fox KAA, Lowe GDO, Murray GD, for the Aspirin for Asymptomatic Atherosclerosis Trialists. Aspirin for prevention of cardiovascular events in a general population screened for a low ankle brachial index: a randomized controlled trial. JAMA. 2010;303(9):841–8.

    PubMed  CAS  Google Scholar 

  33. Meves SH, Diehm C, Berger K, Pittrow D, Trampisch HG, Burghaus I, Tepohl G, Allenberg JR, Endres HG, Schwertfeger M, Darius H, Haberl RL, getABI Study Group. Peripheral arterial disease as an independent predictor for excess stroke morbidity and mortality in primary-care patients: 5-year results of the getABI study. Cerebrovasc Dis. 2010;29:555–6.

    Google Scholar 

  34. El-Menyar A, Amin H, Rashdan I, Souliman K, Deleu D, Saadat K, Al Mahmeed W, Bakir S, Wasif A, Ben Brek A, Bazargani N, Aziz AA, Sigh R, Hatou I, Mahmoud H, Al Suwaidi J. Ankle-brachial index and extent of atherosclerosis in patients from the Middle East (the AGATHA-ME study): a cross-sectional multicenter study. Angiology. 2009;60:329–34.

    PubMed  Google Scholar 

  35. Ascher E, Hingorani A, Markevich N, Costa T, Kallakuri S, Khanimoy Y. Lower extremity revascularization without preoperative contrast arteriography: experience with duplex ultrasound arterial mapping in 485 cases. Ann Vasc Surg. 2002;16:108–14.

    PubMed  Google Scholar 

  36. Ascher E, Hingorani A, Markevich N, Schutzer R, Kallakuri S. Acute lower limb ischemia: the value of duplex ultrasound arterial mapping (DUAM) as the sole preoperative imaging technique. Ann Vasc Surg. 2003;17:284–9.

    PubMed  Google Scholar 

  37. Canciglia A, Mandolfino T. Infrainguinal endovascular procedures based upon the results of duplex scanning. Int Angiol. 2008;27:291–5.

    PubMed  CAS  Google Scholar 

  38. Hingorani AP, Ascher E, Marks N, Puggioni A, Shiferson A, Tran V, Jacob T. Limitations of and lessons learned from clinical experience in 1,020 duplex arteriography. Vascular. 2008;16:147–53.

    PubMed  Google Scholar 

  39. O’Donnell TF, Cossman D, Callow AD. Noninvasive intraoperative monitoring: a prospective study comparing Doppler systolic occlusion pressure and segmental plethysmography. Am J Surg. 1978;135:539–46.

    PubMed  Google Scholar 

  40. Baird RN, Davies PW, Bird DR. Segmental air plethysmography during arterial reconstruction. Br J Surg. 1979;66:718–22.

    PubMed  CAS  Google Scholar 

  41. Rzucidlo EM, Walsh DB, Powell RJ, Zwolak RM, Fillinger MF, Schermerhorn ML, Cronenwett JL. Prediction of early graft failure with intraoperative completion duplex ultrasound scan. J Vasc Surg. 2002;36:975–81.

    PubMed  Google Scholar 

  42. van der Heijden FH, Legemate DA, van Leeuwen MS, Mali WP, Eikelboom BC. Value of duplex scanning in the selection of patients for percutaneous transluminal angioplasty. Eur J Vasc Surg. 1993;7:71–6.

    PubMed  Google Scholar 

  43. Whelan JF, Barry MH, Moir JD. Color flow Doppler ultrasonography: comparison with peripheral arteriography for the investigation of peripheral vascular disease. J Clin Ultrasound. 1992;20:369–74.

    PubMed  CAS  Google Scholar 

  44. Garrett WV, Slaymaker EE, Heintz SE. Intraoperative prediction of symptomatic result of aortofemoral bypass from changes in ankle pressure index. Surgery. 1977;82:504–9.

    PubMed  CAS  Google Scholar 

  45. Brener BJ, Brief DK, Alpert J. Clinical usefulness of noninvasive arterial studies. Contemp Surg. 1980;16:41–55.

    Google Scholar 

  46. Dean RH, Yao JST, Stanton PE, et al. Prognostic indicators in femoropopliteal reconstructions. Arch Surg. 1975;110:1287–93.

    PubMed  CAS  Google Scholar 

  47. Corson JD, Johnson WC, LoGerfo FW, et al. Doppler ankle systolic blood pressure. Prognostic value in vein bypass grafts of the lower extremity. Arch Surg. 1978;113:932–5.

    PubMed  CAS  Google Scholar 

  48. Rutherford RB. Standards for evaluating results of interventional therapy for peripheral vascular disease. Circulation. 1991;83:I-6–11.

    CAS  Google Scholar 

  49. Tooke JE. European consensus document on critical limb ischaemia. Vasc Med Rev. 1990;1:85–9.

    Google Scholar 

  50. Boren CH, Towne JB, Bernhard VM, et al. Profundapopliteal collateral index. A guide to successful profundaplasty. Arch Surg. 1980;115:1366–72.

    PubMed  CAS  Google Scholar 

  51. Strandness Jr DE, Sumner DS. Hemodynamics for surgeons. New York: Grune & Stratton, Inc.; 1975. p. 573–82.

    Google Scholar 

  52. Yao JST, Bergan JJ. Predictability of vascular reactivity to sympathetic ablation. Arch Surg. 1973;107:676–80.

    PubMed  CAS  Google Scholar 

  53. Walker PM, Johnston KW. Predicting the success of a sympathectomy: a prospective study using discriminant function and multiple regression analysis. Surgery. 1980;87:216–21.

    PubMed  CAS  Google Scholar 

  54. AbuRahma AF, Robinson P. Clinical parameters for predicting response to lumbar sympathectomy with severe lower limb ischemia. J Cardiovasc Surg. 1990;31:101–6.

    CAS  Google Scholar 

  55. Tiutiunnik AA. The significance of laser Doppler flowmetry for the prognosis and outcome evaluation of lumbar sympathectomy in patients with obliterating vascular arteriosclerosis of lower extremities. Klin Khir. 2003;3:49–51.

    PubMed  Google Scholar 

  56. Bandyk DF, Schmitt DD, Seabrook GR, et al. Monitoring functional patency of in situ saphenous vein bypasses: the impact of a surveillance protocol and elective revision. J Vasc Surg. 1989;9:286–96.

    PubMed  CAS  Google Scholar 

  57. Calligaro K, Doerr K, McAffee-Bennett S, Krug R, Raviola CA, Dougherty MJ. Should duplex ultrasonography be performed for surveillance of femoropopliteal and femorotibial arterial prosthetic bypasses? Ann Vasc Surg. 2001;15:520–4.

    PubMed  CAS  Google Scholar 

  58. Marks NA, Hingorani AP, Ascher E. Duplex guided balloon angioplasty of failing infrainguinal bypass grafts. Eur J Vasc Endovasc Surg. 2006;32:176–81.

    PubMed  CAS  Google Scholar 

  59. Carter SA. The relationship of distal systolic pressures to healing of skin lesions in the limbs with arterial occlusive disease with special reference to diabetes mellitus. Scand J Clin Lab Invest. 1973;128 suppl 31:239–43.

    CAS  Google Scholar 

  60. Ramsey DE, Manke DA, Sumner DS. Toe blood pressure – valuable adjunct to ankle pressure measurement for assessing peripheral arterial disease. J Cardiovasc Surg. 1983;24:43–8.

    CAS  Google Scholar 

  61. Ruangstetakit C, Chinsakchai K, Mahawongkajit P, Wongwanit C, Mutirangura P. Transcutaneous oxygen tension: a useful predictor of ulcer healing in critical limb ischaemia. J Wound Care. 2010;19:202–6.

    Google Scholar 

  62. Lantis II JC, Boone D, Lee L, Mends D, Benvenisty A, Todd G. The effect of percutaneous intervention on wound healing in patients with mixed arterial venous disease. Ann Vasc Surg. 2011;25:79–86.

    PubMed  Google Scholar 

  63. Robbs JV, Ray R. Clinical predictors of below-knee stump healing following amputation for ischemia. S Afr J Surg. 1982;20:305–10.

    PubMed  CAS  Google Scholar 

  64. van den Broek TA, Dwars BJ, Rauwerda JA, et al. A multivariate analysis of determinants of wound healing in patient after amputation for peripheral vascular disease. Eur J Vasc Surg. 1990;4:291–5.

    PubMed  Google Scholar 

  65. Apelqvist J, Castenfors J, Larsson J, et al. Prognostic value of systolic ankle and toe blood pressure levels in outcome of diabetic foot ulcer. Diabetes Care. 1989;12:373–8.

    PubMed  CAS  Google Scholar 

  66. Barnes RW, Thornhill B, Nix L. Prediction of amputation wound healing roles of Doppler ultrasound and digit photoplethysmography. Arch Surg. 1981;116:80–3.

    PubMed  CAS  Google Scholar 

  67. Nicholas GG, Myers JL, DeMuth Jr WE. The role of vascular laboratory criteria in the selection of patients for lower extremity amputation. Ann Surg. 1982;195:469–73.

    PubMed  CAS  Google Scholar 

  68. Holloway Jr GA. Cutaneous blood flow responses to infection trauma measured by laser Doppler velocimetry. J Invest Dermatol. 1980;74:1–4.

    PubMed  Google Scholar 

  69. Malone JM, Anderson GG, Lalka SG, et al. Prospective comparison of noninvasive techniques for amputation level selection. Am J Surg. 1987;154:179–84.

    PubMed  CAS  Google Scholar 

  70. Schwartz JA, Schuler JJ, O’Conner RJ, et al. Predictive value of distal perfusion pressure in the healing of amputation of the digits and the forefoot. Surg Gynecol Obstet. 1982;154:865–9.

    PubMed  CAS  Google Scholar 

  71. Christensen KS, Klarke M. Transcutaneous oxygen measurement in peripheral occlusive disease: an indicator of wound healing in leg amputation. J Bone Joint Surg Br. 1986;68:423–6.

    PubMed  CAS  Google Scholar 

  72. Lee TQ, Barnett SL, Shanfield SL, et al. Potential application of photoplethysmography technique in evaluating microcirculatory status of STAMP patients: preliminary report. J Rehabil Res Dev. 1990;27:363–8.

    PubMed  CAS  Google Scholar 

  73. Wyss CR, Harrington RM, Burgess EM, et al. Transcutaneous oxygen tension as a predictor of success after an amputation. J 85. Bone Joint Surg (Am). 1988;70:203–7.

    CAS  Google Scholar 

  74. Graham BH, Walton RL, Elings VB, et al. Surface quantification of injection fluorescein as a predictor of flap viability. Plast Reconstr Surg. 1983;71:826–33.

    PubMed  CAS  Google Scholar 

  75. McFarland DC, Lawrence FF. Skin fluorescence: a method to predict amputation site healing. J Surg Res. 1982;32:410–5.

    PubMed  CAS  Google Scholar 

  76. Silverman DG, Roberts A, Reilly CA, et al. Fluorometric quantification of low-dose fluorescein delivery to predict amputation site healing. Surgery. 1987;101:335–41.

    PubMed  CAS  Google Scholar 

  77. Holloway Jr GA, Burgess EM. Preliminary experiences with laser Doppler velocimetry for the determination of amputation levels. Prosthet Orthot Int. 1983;7:63–6.

    PubMed  Google Scholar 

  78. Golbranson FL, Yu EC, Gelberman HH. The use of skin temperature determination in lower extremity amputation level selection. Foot Ankle. 1982;3:170–2.

    PubMed  CAS  Google Scholar 

  79. Dwars BJ, Rauwerda JA, van den Broek TA, et al. A modified scintigraphic technique for amputation level selection in diabetics. Eur J Nucl Med. 1989;15:38–41.

    PubMed  CAS  Google Scholar 

  80. Holstein P, Trep-Jensen J, Bagger H, et al. Skin perfusion pressure measured by isotope wash out in legs with arterial occlusive disease. Clin Physiol. 1983;3:313–24.

    PubMed  CAS  Google Scholar 

  81. Stockel M, Ovesen J, Brochner-Mortensen J, et al. Standardized photoelectric techniques as routine method for selection of amputation level. Acta Orthop Scand. 1982;53:875–8.

    PubMed  CAS  Google Scholar 

  82. Silverman DG, Rubin SM, Reilly CA, et al. Fluorometric prediction of successful amputation level in the ischemic limb. J Rehabil Res Dev. 1985;22:23–8.

    PubMed  CAS  Google Scholar 

  83. Barnes RW, Chanik GD, Slaymaker EE. An index of healing in below-knee amputation: leg blood pressure by Doppler ultrasound. Surgery. 1976;79:13–20.

    PubMed  CAS  Google Scholar 

  84. Verta Jr MJ, Gross WS, VanBellen B, et al. Forefoot per-fusion pressure and minor amputation for gangrene. Surgery. 1976;80:729–34.

    PubMed  Google Scholar 

  85. Bone GE, Pomajzl MJ. Toe blood pressure by photoplethysmography: an index of healing in forefront amputation. Surgery. 1981;89:569–74.

    PubMed  CAS  Google Scholar 

  86. Dale WA, Lewis MR. Management of thoracic outlet syndrome. Ann Surg. 1975;181:575–85.

    PubMed  CAS  Google Scholar 

  87. Gillard J, Perez-Cousin M, Hachulla E, Remy J, Hurtevent JF, Vinckier L, Thevenon A, Duquesnoy B. Diagnosing thoracic outlet syndrome: contribution of provocative tests, ultrasonography, electrophysiology, and helical computed tomography in 48 patients. Joint Bone Spine. 2001;68:416–24.

    PubMed  CAS  Google Scholar 

  88. Wadhwani R, Chaubal N, Sukthankar R, Shroff M, Agarwala S. Color Doppler and duplex sonography in 5 patients with thoracic outlet syndrome. J Ultrasound Med. 2001;20:795–801.

    PubMed  CAS  Google Scholar 

  89. Darling RC, Buckley CJ, Abbott WM, et al. Intermittent claudication in young athletes: popliteal artery entrapment syndrome. J Trauma. 1974;14:543–52.

    PubMed  CAS  Google Scholar 

  90. Abbas M, Calydon M, Ponosh S, Theophilus M, Angel D, Tripathi R, Prendergast F, Sieunarine K. Sonographic diagnosis in iatrogenic entrapment of a femoropopliteal bypass graft. J Ultrasound Med. 2004;23:859–63.

    PubMed  Google Scholar 

  91. Golijanin D, Singer E, Davis R, Bhatt S, Seftel A, Dogra V. Doppler evaluation of erectile dysfunction – part 2. Int J Impot Res. 2007;19:43–8.

    PubMed  CAS  Google Scholar 

  92. Kempczinski RF. Role of the vascular diagnostic laboratory in the evaluation of male impotence. Am J Surg. 1979;138:278–82.

    PubMed  CAS  Google Scholar 

  93. Britt DB, Kemmerer WT, Robison JR. Penile blood flow determination by mercury strain gauge plethysmography. Invest Urol. 1971;8:673–8.

    PubMed  CAS  Google Scholar 

  94. Ramirez C, Box M, Gottesman L. Noninvasive vascular evaluation in male impotence. Technique. Bruit. 1980;4:14–9.

    Google Scholar 

  95. Nath RL, Menzoian JD, Kaplan KH, et al. The multidisciplinary approach to vasculogenic impotence. Surgery. 1981;89:124–33.

    PubMed  CAS  Google Scholar 

  96. Mahe G, Leftheriotis G, Picquet J, Jaquinandi V, Saumet JL, Abraham P. A normal penile pressure cannot rule out the presence of lesions on the arteries supplying the hypogastric circulation in patients with arterial claudication. Vasc Med. 2009;14:331–8.

    PubMed  Google Scholar 

  97. Inuzuka K, Unno N, Mitsuoka H, Yamamoto N, Ishimaru K, Sagara D, Suzuki M, Konno H. Intraoperative monitoring of penile and buttock blood flow during endovascular abdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg. 2006;31:359–65.

    PubMed  CAS  Google Scholar 

  98. Quam JP, King BF, James EM, et al. Duplex and color Doppler sonographic evaluation of vasculogenic impotence. AJR. 1989;153:1141–7.

    PubMed  CAS  Google Scholar 

  99. Benson CB, Vickers MA. Sexual impotence caused by vascular disease: diagnosis with duplex sonography. AJR. 1989;153:1149–53.

    PubMed  CAS  Google Scholar 

  100. Paushter DM. Role of duplex sonography in the evaluation of sexual impotence. AJR. 1989;153:1161–3.

    PubMed  CAS  Google Scholar 

  101. Aversa A, Caprio M, Spera G, Fabbri A. Non-invasive vascular imaging for erectile dysfunction. J Endocrinol Invest. 2003;26:122–4.

    PubMed  CAS  Google Scholar 

  102. Mancini M, Negri L, Maggi M, Nerva F, Forti G, Colpi GM. Doppler color ultrasonography in the diagnosis of erectile dysfunction of vascular origin. Arch Ital Urol Androl. 2000;72:361–5.

    PubMed  CAS  Google Scholar 

  103. Roy C, Saussine C, Tuchmann C, Castel E, Lang H, Jacqmin D. Duplex Doppler sonography of the flaccid penis: potential role in the evaluation of impotence. J Clin Ultrasound. 2000;28:290–4.

    PubMed  CAS  Google Scholar 

  104. Altinkilic B, Hauck EW, Weidner W. Evaluation of penile perfusion by color-coded duplex sonography in the management of erectile dysfunction. World J Urol. 2004;22:361–4.

    PubMed  Google Scholar 

  105. Aversa A, Sarteschi LM. The role of penile color-duplex ultrasound for the evaluation or erectile dysfunction. J Sex Med. 2007;4:1437–47.

    PubMed  Google Scholar 

  106. Gontero P, Sriprasad S, Wilkins CJ, Donaldson N, Muir GH, Sidhu PS. Phentolamine re-dosing during penile dynamic colour Doppler ultrasound: a practical method to abolish a false diagnosis of venous leakage in patients with erectile dysfunction. Br J Radiol. 2004;77:922–6.

    PubMed  CAS  Google Scholar 

  107. Sumner DS, Strandness Jr DE. An abnormal finger pulse associated with cold sensitivity. Ann Surg. 1972;175:294–8.

    PubMed  CAS  Google Scholar 

  108. Szilagyi DE, Smith RF, Elliott JP, et al. Congenital arteriovenous anomalies of the limbs. Arch Surg. 1976;111:423–9.

    PubMed  CAS  Google Scholar 

  109. Rutherford E, Fleming PW, McLeod FD. Vascular diagnostic methods for evaluating patients with arteriovenous fistulas. In: Diethrich EB, editor. Noninvasive cardiovascular diagnosis. Baltimore: University Park Press; 1978. p. 217–30.

    Google Scholar 

  110. Pearce WH, Rutherford RB, Whitehill TA, et al. Nuclear magnetic resonance imaging: its diagnostic value in patients with congenital vascular malformations of the limbs. J Vasc Surg. 1988;8:64–70.

    PubMed  CAS  Google Scholar 

  111. Rittgers SE, Garcia-Valdez C, McCormick JT, et al. Noninvasive blood flow measurement in expanded polytetrafluoroethylene grafts for hemodialysis access. J Vasc Surg. 1986;3:635–42.

    PubMed  CAS  Google Scholar 

  112. Tordoir JH, Hoeneveld H, Eikelboom BC, et al. The correlation between clinical and duplex ultrasound parameters and the development of complications in arteriovenous fistulas for hemodialysis. Eur J Vasc Surg. 1990;4:179–84.

    PubMed  CAS  Google Scholar 

  113. Anderson TJ, Uehata A, Gerhard MD, et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol. 1995;26:1235–41.

    PubMed  CAS  Google Scholar 

  114. Vinet A, Karpoff L, Walther G, Startun A, Obert P, Goret L, Dauzat M, Perez-Martin A. Vascular reactivity at rest and during exercise in middle-aged obese men: effects of short-term, low-intensity, exercise training. Int J Obes. 2010;35:1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali F. AbuRahma M.D., RVT, RPVI .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

AbuRahma, A.F. (2013). Clinical Implications of the Vascular Laboratory in the Diagnosis of Peripheral Arterial Disease. In: AbuRahma, A., Bandyk, D. (eds) Noninvasive Vascular Diagnosis. Springer, London. https://doi.org/10.1007/978-1-4471-4005-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4005-4_35

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4004-7

  • Online ISBN: 978-1-4471-4005-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics