Skip to main content

Abstract

This chapter overviews three-dimensional (3D) medical imaging and the associated analysis techniques. The methods described here aim to reconstruct the inside of the human body in three dimensions. This is in contrast to optical methods that try to reconstruct the surface of viewed objects, although there are similarities in some of the geometries and techniques used. Due to the wide scope of medical imaging it is unrealistic to attempt an exhaustive or detailed description of techniques. Rather, the aim is to provide some illustrations and directions for further study for the interested reader. The first section gives an overview of the physics of data acquisition, where images come from and why they look the way they do. The next section illustrates how this raw data is processed into surface and volume data for viewing and analysis. This is followed by a description of how to put images in a common coordinate frame and a more specific case study illustrating higher dimensional data manipulation. Finally, we describe some clinical applications to show how these methods can be used to provide effective treatment of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Biomedical Imaging Resource, Mayo Foundation, Rochester, MN, USA or ITK-SNAP [84], http://www.itksnap.org.

  2. 2.

    www.sofa-framework.org.

  3. 3.

    The International Conference on Medical Image Computing and Computer Assisted Intervention.

  4. 4.

    See www.grand-challenge.org.

  5. 5.

    International Conference on Information Processing in Medical Imaging. See www.ipmi-conference.org.

  6. 6.

    www.grand-challenge.org.

  7. 7.

    International Conference on Information Processing in Computer-Assisted Interventions.

  8. 8.

    Digital Imaging and Communications in Medicine.

  9. 9.

    www.itksnap.org/download.

References

  1. Bailey, D., Townsend, D., Valk, P., Maisey, M.N. (eds.): Positron Emission Tomography. Springer, Berlin (2005)

    Google Scholar 

  2. Baillard, C., Hellier, P., Barillot, C.: Segmentation of brain 3D MR images using level sets and dense registration. Med. Image Anal. 5, 185–194 (2001)

    Article  Google Scholar 

  3. Barret, H.H., Myers, K.J.: Foundations of Image Science. Pure and Applied Optics. Wiley, New York (2004)

    Google Scholar 

  4. Barrett, J.F., Keat, N.: Artifacts in CT: recognition and avoidance. Radiograph., Rev. Publ. Radiol. Soc. N. Am. 24(6), 1679–1691 (2004). doi:10.1148/rg.246045065. http://radiographics.rsna.org/content/24/6/1679.full

    Google Scholar 

  5. Batchelor, P., Castellano Smith, A., Hill, D., Hawkes, D., Cox, T., Dean, A.: Measures of folding applied to the development of the human fetal brain. IEEE Trans. Med. Imaging 21(8), 953–965 (2002)

    Article  Google Scholar 

  6. Batchelor, P.G., Calamante, F., Tournier, D., Atkinson, D., Hill, D.L.G., Connelly, A.: Quantification of the shape of fiber tracts. Methods 903(2005), 894–903 (2006). doi:10.1002/mrm.20858

    Google Scholar 

  7. Batchelor, P.G., Calamante, F., Tournier, J., Atkinson, D., Hill, D.L.G., Connelly, A.: Quantification of the shape of fiber tracts. Magn. Reson. Med. 55, 894–903 (2006)

    Article  Google Scholar 

  8. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M. (eds.): Computational Geometry: Algorithms and Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  9. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of Physics Publishing, Bristol (1998)

    Book  MATH  Google Scholar 

  10. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  11. Birkfellner, W.: Applied Medical Image Processing: A Basic Course. CRC Press, Boca Raton (2010)

    Google Scholar 

  12. Boissonnat, J.D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  13. Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Med. Imaging 11, 567–585 (1989)

    MATH  Google Scholar 

  14. de Bruijne, M., van Ginneken, B., Viergever, M.A., Niessen, W.J.: Adapting active shape models for 3D segmentation of tubular structures in medical images. In: Proceedings IPMI (2003)

    Google Scholar 

  15. de Bruijne, M., van Ginneken, B., Viergever, M.A., Niessen, W.J.: Interactive segmentation of abdominal aortic aneurysms in CTA images. Med. Image Anal. 8, 127–138 (2004)

    Article  Google Scholar 

  16. Bushberg, J.T.: The Essential Physics of Medical Imaging. Lippincott Williams & Wilkins, Baltimore (2002)

    Google Scholar 

  17. Carmichael, O.T., Aizenstein, H.A., Davis, S.W., Becker, J.T., Thompson, P.M., Meltzer, C.C., Liu, Y.: Atlas-based hippocampus segmentation in Alzheimer’s disease and mild cognitive impairment. Neuroimage 27, 979–990 (2005)

    Article  Google Scholar 

  18. Ciofolo, C., Barillot, C.: Atlas-based segmentation of 3d cerebral structures with competitive level sets and fuzzy control. Med. Image Anal. 13, 456–470 (2010)

    Article  Google Scholar 

  19. Cohen, L.D.: On active contour models and balloon. CVGIP, Image Underst. 53, 211–218 (1991)

    Article  MATH  Google Scholar 

  20. Cootes, T., Twining, C., Babalola, K., Taylor, C.: Diffeomorphic statistical shape models. Image Vis. Comput. 26(3), 326–332 (2008)

    Article  Google Scholar 

  21. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Comput. Vis. Image Underst. 61, 38–59 (1995)

    Article  Google Scholar 

  22. Cuadra, M.B., Pollo, C., Bardera, A., Cuisenaire, O., Villemure, J.G., Thiran, J.P.: Atlas-based segmentation of pathological MR brain images using a model of lesion growth. IEEE Trans. Med. Imaging 23, 1301–1314 (2004)

    Article  Google Scholar 

  23. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  24. Ecabert, O., Peters, J., Schramm, H., Lorenz, C., von Berg, J., Walker, M.J., Vembar, M., Olszewski, M.E., Subramanyan, K., Lavi, G., Weese, J.: Automatic model-based segmentation of the heart in CT images. IEEE Trans. Med. Imaging 27, 1189–1201 (2008)

    Article  Google Scholar 

  25. Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  26. Epstein, C.L.: Introduction to the Mathematics of Medical Imaging, 2nd edn. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  27. Erasmus, L.J., Hurter, D., Naudé, M., Kritzinger, H.G., Acho, S.: A short overview of MRI artefacts. SA J. Radiol. 8(2), 13–17 (2004)

    Google Scholar 

  28. Fitzpatrick, M.J., West, J.B., Maurer, C.R. Jr.: Predicting error in rigid-body point-based registration. IEEE Trans. Med. Imaging 17(5), 694–702 (1998)

    Article  Google Scholar 

  29. Fripp, J., Crozier, S., Warfield, S., Ourselin, S.: Automatic segmentation of the knee bones using 3D active shape models. In: Proceedings ICPR (2006)

    Google Scholar 

  30. Gardner, R.J.: In: Geometric Tomography. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  31. Hajnal, J.V. (ed.): Medical Image Registration. CRC Press, Boca Raton (2001)

    Google Scholar 

  32. Hall, P., Ngan, M., Andreae, P.: Reconstruction of vascular networks using three-dimensional models. IEEE Trans. Med. Imaging 16(6), 919–929 (1997)

    Article  Google Scholar 

  33. Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 755–768 (2003)

    Article  Google Scholar 

  34. Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13, 543–563 (2009)

    Article  Google Scholar 

  35. Hill, D.L.G., Batchelor, P.G., Holden, M., Hawkes, D.J.: Medical image registration. Phys. Med. Biol. 46, R1–R45 (2001)

    Article  Google Scholar 

  36. Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13, 601–609 (1994)

    Article  Google Scholar 

  37. Imai, K., Ikeda, M., Wada, S., Enchi, Y., Niimi, T.: Analysis of streak artefacts on CT images using statistics of extremes. Br. J. Radiol. 80(959), 911–918 (2007). http://bjr.birjournals.org/cgi/content/abstract/80/959/911. doi:10.1259/bjr/93741044

    Article  Google Scholar 

  38. Johansen-Berg, H., Behrens, T.E. (eds.): Diffusion MRI from Quantitative Measurement to In-Vivo Neuroanatomy. Elsevier, Amsterdam (2009)

    Google Scholar 

  39. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. SIAM, Philadelphia (2001). Unabridged edn.

    Book  Google Scholar 

  40. Kass, M., Witkin, A., Terzopoulos, D.: Snakes—active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1987)

    Article  Google Scholar 

  41. Klein, S., van der Heide, U.A., Lips, I.M., van Vulpen, M., Staring, M., Pluim, J.P.: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med. Phys. 35, 1407–1417 (2008)

    Article  Google Scholar 

  42. Kucera, D., Martin, R.W.: Segmentation of sequences of echocardiographic images using a simplified 3D active contour model with region-based external forces. Comput. Med. Imaging Graph. 21, 1–21 (1997)

    Article  Google Scholar 

  43. Lerotic, M., Chung, A., Mylonas, G., Yang, G.Z.: Pq-space based non-photorealistic rendering for augmented reality. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. Lecture Notes in Computer Science, vol. 4792, pp. 102–109. Springer, Berlin (2007)

    Google Scholar 

  44. Liang, Z.P., Lauterbur, P.C.: Principles of Magnetic Resonance Imaging: a Signal Processing Perspective. Series on Biomedical Engineering. IEEE Press, New York (2000)

    Google Scholar 

  45. Liebling, M.: CT Reconstruction Demo Applet. Online (2001). http://bigwww.epfl.ch/demo/jtomography/demo.html

  46. Linguraru, M.G., Sandberg, J.K., Li, Z., Pura, J.A., Summers, R.M.: Atlas-based automated segmentation of spleen and liver using adaptive enhancement estimation. In: Proceedings MICCAI, pp. 1001–1008 (2009)

    Google Scholar 

  47. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface reconstruction algorithm. Comput. Graph. 21(3), 163–169 (1987)

    Google Scholar 

  48. Lorenz, C., von Berg, J.: A comprehensive shape model of the heart. Med. Image Anal. 10, 657–670 (2006)

    Article  Google Scholar 

  49. Lorenzo-Valdés, M., Sanchez-Ortiza, G.I., Elkington, A.G., Mohiaddin, R.H., Rueckert, D.: Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Med. Image Anal. 8, 255–265 (2004)

    Article  Google Scholar 

  50. Malladi, R., Sethian, J., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

    Article  Google Scholar 

  51. Manniesing, R., Velthuis, B.K., can Leeuwen, M.S., van der Schaaf, I.C., van Laar, P.J., Niessen, W.J.: Level set based cerebral vasculature segmentation and diameter quantification in ct angiography. Med. Image Anal. 10(2), 200–214 (2006)

    Article  Google Scholar 

  52. Manzke, R., Meyer, C., Ecabert, O., Peters, J., Noordhoek, N.J., Thiagalingam, A., Reddy, V., Chan, R.C., Weese, J.: Automatic segmentation of rotational X-ray images for anatomic intra-procedural surface generation in atrial fibrillation ablation procedures. IEEE Trans. Med. Imaging 29, 260–272 (2010)

    Article  Google Scholar 

  53. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Med. Image Anal. 1(2), 91–108 (1996)

    Article  Google Scholar 

  54. Mei, L., Figl, M., Darzi, A., Rueckert, D., Edwards, P.: Sample sufficiency and PCA dimension for statistical shape models. In: Proceedings of the 10th European Conference on Computer Vision: Part IV, pp. 492–503. Springer, Berlin (2008). http://portal.acm.org/citation.cfm?id=1478237.1478274

    Google Scholar 

  55. Mei, L., Figl, M., Rueckert, D., Darzi, A., Edwards, P.: Sample sufficiency and number of modes to retain in statistical shape modelling. In: Metaxas, D., Axel, L., Fichtinger, G., Szkely, G. (eds.) Medical Image Computing and Computer-Assisted Intervention MICCAI 2008. Lecture Notes in Computer Science, vol. 5241, pp. 425–433. Springer, Berlin (2008)

    Chapter  Google Scholar 

  56. Muralidhar, G.S., Bovik, A.C., Giese, J.D., Sampat, M.P., Whitman, G.J., Haygood, T.M., Stephens, T.W., Markey, M.K.: Snakules: a model-based active contour algorithm for the annotation of spicules on mammography. IEEE Trans. Med. Imaging 29, 1768–1780 (2010)

    Article  Google Scholar 

  57. Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. Monographs on Mathematical Modeling and Computation. SIAM, Philadelphia (2001)

    Google Scholar 

  58. Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: a survey. IEEE Trans. Med. Imaging 25(8), 987–1010 (2006)

    Article  Google Scholar 

  59. Olabarriaga, S.D., Smeulders, A.W.M.: Interaction in the segmentation of medical images: a survey. Med. Image Anal. 5(2), 127–142 (2001)

    Article  Google Scholar 

  60. Paragios, N.: A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans. Med. Imaging 22(6), 773–776 (2003)

    Article  Google Scholar 

  61. Pelizzari, C.A., Tan, K.K., Levin, D.N., Chen, G.T.Y., Balter, J.: Interactive 3D patient-image registration. In: Colchester, A.C.F., Hawkes, D.J. (eds.) Information Processing in Medical Imaging, pp. 133–141. Springer, Berlin (1991)

    Google Scholar 

  62. Peters, J., Ecabert, O., Meyer, C., Schramm, H., Kneser, R., Groth, A., Weese, J.: Automatic whole heart segmentation in static magnetic resonance image volumes. In: Proceedings MICCAI, pp. 402–410 (2007)

    Google Scholar 

  63. Peters, T.M., Cleary, K.R.: Image-Guided Interventions: Technology and Applications. Springer, Berlin (2008)

    Book  Google Scholar 

  64. Pham, D.L., Xu, C., Prince, J.L.: A survey of current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2, 315–338 (2000)

    Article  Google Scholar 

  65. Pratt, P., Mayer, E., Vale, J., Cohen, D., Edwards, E., Darzi, A., Yang, G.Z.: An effective visualisation and registration system for image-guided robotic partial nephrectomy. J. Robotic Surgery (2012)

    Google Scholar 

  66. Rajan, J., Poot, D., Juntu, J., Sijbers, J.: Noise measurement from magnitude MRI using local estimates of variance and skewness. Phys. Med. Biol. 55(16), N441-9 (2010). http://www.ncbi.nlm.nih.gov/pubmed/20679694. doi:10.1088/0031-9155/55/16/N02

    Article  Google Scholar 

  67. Rohlfing, T., Brandt, R., Maurer, C. Jr., Menzel, R.: Bee brains, b-splines and computational democracy: generating an average shape atlas. In: Proceedings MMBIA, pp. 187–194 (2001)

    Google Scholar 

  68. Rohlfing, T., Brandt, R., Menzel, R., Maurer, C.R. Jr.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. Neuroimage 21, 1428–1442 (2004)

    Article  Google Scholar 

  69. Roth, H., McClelland, J., Modat, M., Boone, D., Hu, M., Ourselin, S., Slabaugh, G.G., Halligan, S., Hawkes, D.J.: Establishing spatial correspondence between the inner colon surfaces from prone and supine ct colonography. In: Proceedings MICCAI (Beijing), pp. 497–504 (2010)

    Google Scholar 

  70. Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic construction of 3D statistical deformation models of the brain using nonrigid registration. IEEE Trans. Med. Imaging 22, 1014–1025 (2003)

    Article  Google Scholar 

  71. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  72. Rhode, K., Sermesant, M.: Modeling and registration for electrophysiology procedures based on three-dimensional imaging. Curr. Cardiovasc. Imaging Rep. 4, 116–126 (2011)

    Article  Google Scholar 

  73. Shepp, L., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1, 113–122 (1982)

    Article  Google Scholar 

  74. Slepian, D. (ed.): Key Papers in the Development of Information Theory. Reprint Series. IEEE Press, New York (1974)

    MATH  Google Scholar 

  75. Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit. 32(1), 71–86 (1999)

    Article  Google Scholar 

  76. Suetens, P.: Fundamentals of Medical Imaging. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  77. Tabakov, S., Smith, P.H.S., Milano, F., Strand, S.E., Lewis, C. (eds.): Encyclopedia of Medical Physics. Taylor & Francis, London (2012). ISBN 9781439846520 http://www.emitel2.eu/. available [Online]

    Google Scholar 

  78. Tao, X., Prince, J.L., Davatzikos, C.: Using a statistical shape model to extract sulcal curves on the outer cortex of the human brain. IEEE Trans. Med. Imaging 21, 513–524 (2002)

    Article  Google Scholar 

  79. Viola, P.A., Wells, W.M.: Alignment by maximisation of mutual information. In: Proceedings of the 5th International Conference on Computer Vision, pp. 15–23 (1995)

    Google Scholar 

  80. Weickert, J., Laidlaw, D. (eds.): Visualization and Processing of Tensor Fields. II. Mathematics+Visualization. Springer, Berlin (2009)

    Google Scholar 

  81. Weickert, J., Hagen, H. (eds.): Visualization and Processing of Tensor Fields. Mathematics+Visualization. Springer, Berlin (2006)

    Google Scholar 

  82. Williams, D.J., Shah, M.: A fast algorithm for active contours and curvature estimation. CVGIP, Image Underst. 55, 14–26 (1992)

    Article  MATH  Google Scholar 

  83. Xu, C., Pham, D.L., Rettmann, M.E., Yu, D.N., Prince, J.L.: Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans. Med. Imaging 18, 467–480 (1999)

    Article  Google Scholar 

  84. Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  85. Zhu, X.J., Zhang, P.F., Shao, J.H., Cheng, Y.Z., Zhang, Y., Bai, J.: A snake-based method for segmentation of intravascular ultrasound images and its in vivo validation. Ultrasonics 51, 181–189 (2011)

    Article  Google Scholar 

  86. Zhuang, X., Rhode, K.S., Razavi, R.S., Hawkes, D.J., Ourselin, S.: A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Trans. Med. Imaging 29, 1612–1625 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. “Eddie” Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Batchelor, P.G., “Eddie” Edwards, P.J., King, A.P. (2012). 3D Medical Imaging. In: Pears, N., Liu, Y., Bunting, P. (eds) 3D Imaging, Analysis and Applications. Springer, London. https://doi.org/10.1007/978-1-4471-4063-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4063-4_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4062-7

  • Online ISBN: 978-1-4471-4063-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics